Statistical hypotheses testing for parameters of binomial conditionally autoregressive model of spatio-temporal data
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2017), pp. 16-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to new binomial conditional autoregressive model of spatio-temporal data. This model is multidimensional non-homogeneous Markov chain with a finite state space. We use the maximum likelihood method for statistical estimation of the model parameters. We show that these estimators are consistent and asymptotically normally distributed. Fisher information matrix is calculated; it takes block-diagonal form and is nonsingular. The results of the analysis of the asymptotic properties of the maximum likelihood estimators are used to construct a statistic for statistical testing of hypotheses about the values of the parameters of the binomial conditional autoregressive model. Decision rule for statistical hypotheses testing is built and an asymptotic expression of the power of the test is obtained for a family of contiguous alternatives. Experiments have been conducted on simulated data to evaluate performance of the constructed decision rule. Plots of experimental and theoretical estimates of the first type error probability and power of the test in dependence on the length of the observation period are presented, they illustrate adequacy of theoretical and experimental results.
Keywords: spatio-temporal data; vector Markov chain; maximum likelihood estimator; statistical hypotheses testing.
@article{BGUMI_2017_1_a2,
     author = {M. Zhurak and Yu. S. Kharin},
     title = {Statistical hypotheses testing for parameters of binomial conditionally autoregressive model of spatio-temporal data},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {16--22},
     publisher = {mathdoc},
     volume = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a2/}
}
TY  - JOUR
AU  - M. Zhurak
AU  - Yu. S. Kharin
TI  - Statistical hypotheses testing for parameters of binomial conditionally autoregressive model of spatio-temporal data
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2017
SP  - 16
EP  - 22
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a2/
LA  - ru
ID  - BGUMI_2017_1_a2
ER  - 
%0 Journal Article
%A M. Zhurak
%A Yu. S. Kharin
%T Statistical hypotheses testing for parameters of binomial conditionally autoregressive model of spatio-temporal data
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2017
%P 16-22
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a2/
%G ru
%F BGUMI_2017_1_a2
M. Zhurak; Yu. S. Kharin. Statistical hypotheses testing for parameters of binomial conditionally autoregressive model of spatio-temporal data. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2017), pp. 16-22. http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a2/

[1] S. Kang, “Case Study for Modelling Cancer Incidence Using Bayesian Spatio-Temporal Models”, Aust. and N. Z. J. Stat., 57 (2015), 325–345

[2] G. Xu, F. Liang, M. G. Genton, “A Bayesian spatio-temporal geostatistical model with an auxiliary lattice for large datasets”, Stat. Sinica, 25 (2015), 61–79

[3] X. Zhu, “Space-time wind speed forecasting for improved power system dispatch (with discussion and rejoinder)”, TEST, 23 (2014), 1–25

[4] F. Zhu, S. Liu, L. Shi, “Local influence analysis for Poisson autoregression with an application to stock transaction data”, Stat. Neerlandica, 7/1 (2016), 4–25

[5] Yu. S. Kharin, M. K. Zhurak, “Binomialnaya uslovno avtoregressionnaya model prostranstvenno-vremennykh dannykh i ee veroyatnostno-statisticheskii analiz”, Dokl. NAN Belarusi, 59(6) (2015), 5–12

[6] Yu. S. Kharin, M. K. Zhurak, “Asimptoticheskii analiz otsenok maksimalnogo pravdopodobiya parametrov binomialnoi uslovno avtoregressionnoi modeli prostranstvenno-vremennykh dannykh”, Izv. NAN Belarusi. Ser. fiz.-matem. nauk, 2016, 36–45

[7] Yu. S. Kharin, N. M. Zuev, E. E. Zhuk, “Teoriya veroyatnostei, matematicheskaya i prikladnaya statistika”, Minsk, 2011