Asymptotics of the eigenvalues of approximating differential equations with $\delta$-different coefficients
Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2017), pp. 4-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

The overall objective is to describe the behavior of the eigenvalues of approximating operators and figuring out how to limit one turns one's own importance. Earlier we have done the following: built approximation expression $L_{0}u = -\Delta u+a(\varepsilon)\delta u = f$ operators of finite rank; explicit form approximating the resolvent family; resolutions and found the limit cases of resonance highlighted. In this article, we will continue to address this problem and set out a step associated with the description of the spectrum constructed limit operators and study the behavior of the eigenvalues of approximating operators, using Newton's diagram method. As a result of eigenvalues of the operator were found.
Keywords: generalized function; eigenvalues; Newton's method; asymptotic behavior.
@article{BGUMI_2017_1_a0,
     author = {M. G. Kot},
     title = {Asymptotics of the eigenvalues of approximating differential equations with $\delta$-different coefficients},
     journal = {Journal of the Belarusian State University. Mathematics and Informatics},
     pages = {4--10},
     publisher = {mathdoc},
     volume = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a0/}
}
TY  - JOUR
AU  - M. G. Kot
TI  - Asymptotics of the eigenvalues of approximating differential equations with $\delta$-different coefficients
JO  - Journal of the Belarusian State University. Mathematics and Informatics
PY  - 2017
SP  - 4
EP  - 10
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a0/
LA  - ru
ID  - BGUMI_2017_1_a0
ER  - 
%0 Journal Article
%A M. G. Kot
%T Asymptotics of the eigenvalues of approximating differential equations with $\delta$-different coefficients
%J Journal of the Belarusian State University. Mathematics and Informatics
%D 2017
%P 4-10
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a0/
%G ru
%F BGUMI_2017_1_a0
M. G. Kot. Asymptotics of the eigenvalues of approximating differential equations with $\delta$-different coefficients. Journal of the Belarusian State University. Mathematics and Informatics, Tome 1 (2017), pp. 4-10. http://geodesic.mathdoc.fr/item/BGUMI_2017_1_a0/

[1] C. Albeverio, “Reshaemye modeli v kvantovoi mekhanike”, 1991

[2] A. B. Antonevich, T. A. Romanchuk, “Approksimatsii operatorov s delta-obraznymi koeffitsientami”, Aktualnye problemy matematiki: sb. nauch. tr. Grodn. gos. un-ta im. Ya. Kupaly, 2008, 11–28, Grodno

[3] A. B. Antonevich, T. A. Romanchuk, “Uravneniya s delta-obraznymi koeffitsientami: metod konechnomernykh approksimatsii”, Saarbryukken, 2012

[4] M. G. Kot, “O rezolventnoi skhodimosti operatorov, approksimiruyuschikh sistemu uravnenii d-obraznymi koeffitsientami”, Vestn. BGU. Fizika. Matematika. Informatika, 2015, 111–117

[5] I. S. Kaschenko, “Asimptoticheskoe razlozhenie reshenii uravnenii”, Yaroslavl, 2011

[6] V. A. Vasilev, “Asimptotika eksponentsialnykh integralov, diagramma Nyutona i klassifikatsiya tochek minimuma”, Funktsion. analiz i ego pril, 11(3) (1977), 1–11

[7] P. P. Zabreiko, A. V. Krivko-Krasko, “Diagrammy Nyutona i algebraicheskie krivye”, Tr. In-ta matem., 22(2) (2014), 32–45

[8] P. P. Zabreiko, A. V. Krivko-Krasko, “Diagrammy Nyutona i algebraicheskie krivye. II”, Tr. In-ta matem., 23(1) (2015), 64–75