On some integrals involving $\Delta_2(x)$ and $\Delta_3(x)$
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 46 (2021) no. 1
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $k\geq 2$ be a fixed natural number and $d_k(n)$ denote the number of ways $n$ can be written as a product of $k$ positive integers. Let $\Delta_k(x)$ denote the error term in the asymptotic formula of the summatory function of $d_k(n)$.
In this paper we study some integrals involving $\Delta_2(x)$ and $\Delta_3(x)$.
@article{BASS_2021_46_1_a5,
author = {Wenguang Zhai},
title = {On some integrals involving $\Delta_2(x)$ and $\Delta_3(x)$},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {93 - 114},
year = {2021},
volume = {46},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BASS_2021_46_1_a5/}
}
TY - JOUR AU - Wenguang Zhai TI - On some integrals involving $\Delta_2(x)$ and $\Delta_3(x)$ JO - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles PY - 2021 SP - 93 EP - 114 VL - 46 IS - 1 UR - http://geodesic.mathdoc.fr/item/BASS_2021_46_1_a5/ ID - BASS_2021_46_1_a5 ER -
%0 Journal Article %A Wenguang Zhai %T On some integrals involving $\Delta_2(x)$ and $\Delta_3(x)$ %J Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles %D 2021 %P 93 - 114 %V 46 %N 1 %U http://geodesic.mathdoc.fr/item/BASS_2021_46_1_a5/ %F BASS_2021_46_1_a5
Wenguang Zhai. On some integrals involving $\Delta_2(x)$ and $\Delta_3(x)$. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 46 (2021) no. 1. http://geodesic.mathdoc.fr/item/BASS_2021_46_1_a5/