Some thoughts on pseudoprimes
Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 46 (2021) no. 1
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We consider several problems about pseudoprimes. First, we look at
the issue of their distribution in residue classes. There is a literature
on this topic in the case that the residue class is coprime to the modulus.
Here we provide some robust statistics in both these cases and the general
case. In particular we tabulate all even pseudoprimes to $10^{16}$.
Second, we prove a recent conjecture of Ordowski: the set of integers $n$
which are a pseudoprime to some base which is a proper divisor of $n$
has an asymptotic density.
@article{BASS_2021_46_1_a3,
author = {Carl Pomerance and Samuel S. Wagstaff Jr.},
title = {Some thoughts on pseudoprimes},
journal = {Bulletin de l'Acad\'emie serbe des sciences. Classe des sciences math\'ematiques et naturelles},
pages = {53 - 72},
year = {2021},
volume = {46},
number = {1},
url = {http://geodesic.mathdoc.fr/item/BASS_2021_46_1_a3/}
}
TY - JOUR AU - Carl Pomerance AU - Samuel S. Wagstaff Jr. TI - Some thoughts on pseudoprimes JO - Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles PY - 2021 SP - 53 EP - 72 VL - 46 IS - 1 UR - http://geodesic.mathdoc.fr/item/BASS_2021_46_1_a3/ ID - BASS_2021_46_1_a3 ER -
Carl Pomerance; Samuel S. Wagstaff Jr. Some thoughts on pseudoprimes. Bulletin de l'Académie serbe des sciences. Classe des sciences mathématiques et naturelles, Tome 46 (2021) no. 1. http://geodesic.mathdoc.fr/item/BASS_2021_46_1_a3/