Graphs, Disjoint Matchings and Some Inequalities
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2023), pp. 26-36

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph $G$ is $k$-edge-colorable if the edges of $G$ can be assigned a color from $\{1,...,k\}$ so that adjacent edges of $G$ receive different colors. A maximum $k$-edge-colorable subgraph of $G$ is a $k$-edge-colorable subgraph of $G$ containing maximum number of edges. For $k \geq 1$ and a graph $G$, let $\nu_k(G)$ denote the number of edges in a maximum $k$-edge-colorable subgraph of $G$. In 2010 Mkrtchyan, Petrosyan and Vardanyan proved that if $G$ is a cubic graph, then $\nu_2(G) \leq \frac{|V(G)| + 2\cdot \nu_3(G)}{4}$ [samvel:2010]. For cubic graphs containing a perfect matching, in particular, for bridgeless cubic graphs, this inequality can be stated as $\nu_2(G) \leq \frac{\nu_1(G) + \nu_3(G)}{2}$. One may wonder whether there are other well-known graph classes, where a similar result can be obtained. In this work, we prove lower bounds for $\nu_k(G)$ in terms of $\frac{\nu_{k-1}(G)+\nu_{k+1}(G)}{2}$ for $k\geq 2$ and graphs $G$ containing at most $1$ cycle. We also present the corresponding conjectures for nearly bipartite graphs.
@article{BASM_2023_3_a1,
     author = {Lianna Hambardzumyan and Vahan Mkrtchyan},
     title = {Graphs, {Disjoint} {Matchings} and {Some} {Inequalities}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {26--36},
     publisher = {mathdoc},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BASM_2023_3_a1/}
}
TY  - JOUR
AU  - Lianna Hambardzumyan
AU  - Vahan Mkrtchyan
TI  - Graphs, Disjoint Matchings and Some Inequalities
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2023
SP  - 26
EP  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2023_3_a1/
LA  - ru
ID  - BASM_2023_3_a1
ER  - 
%0 Journal Article
%A Lianna Hambardzumyan
%A Vahan Mkrtchyan
%T Graphs, Disjoint Matchings and Some Inequalities
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2023
%P 26-36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2023_3_a1/
%G ru
%F BASM_2023_3_a1
Lianna Hambardzumyan; Vahan Mkrtchyan. Graphs, Disjoint Matchings and Some Inequalities. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2023), pp. 26-36. http://geodesic.mathdoc.fr/item/BASM_2023_3_a1/