A fixed point theorem for $p$-contraction mappings in partially ordered metric spaces and application to ordinary differential equations
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2022), pp. 15-21

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove a fixed point theorem for $p$-contraction mappings in partially ordered metric spaces. As an application, we investigate the possibility of optimally controlling the solution of the ordinary differential equations.
@article{BASM_2022_3_a1,
     author = {Ahmed Chaouki Aouine},
     title = {A fixed point theorem for $p$-contraction mappings in partially ordered metric spaces and application to ordinary differential equations},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {15--21},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2022_3_a1/}
}
TY  - JOUR
AU  - Ahmed Chaouki Aouine
TI  - A fixed point theorem for $p$-contraction mappings in partially ordered metric spaces and application to ordinary differential equations
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2022
SP  - 15
EP  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2022_3_a1/
LA  - en
ID  - BASM_2022_3_a1
ER  - 
%0 Journal Article
%A Ahmed Chaouki Aouine
%T A fixed point theorem for $p$-contraction mappings in partially ordered metric spaces and application to ordinary differential equations
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2022
%P 15-21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2022_3_a1/
%G en
%F BASM_2022_3_a1
Ahmed Chaouki Aouine. A fixed point theorem for $p$-contraction mappings in partially ordered metric spaces and application to ordinary differential equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2022), pp. 15-21. http://geodesic.mathdoc.fr/item/BASM_2022_3_a1/