A fixed point theorem for $p$-contraction mappings in partially ordered metric spaces and application to ordinary differential equations
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2022), pp. 15-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove a fixed point theorem for $p$-contraction mappings in partially ordered metric spaces. As an application, we investigate the possibility of optimally controlling the solution of the ordinary differential equations.
@article{BASM_2022_3_a1,
     author = {Ahmed Chaouki Aouine},
     title = {A fixed point theorem for $p$-contraction mappings in partially ordered metric spaces and application to ordinary differential equations},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {15--21},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2022_3_a1/}
}
TY  - JOUR
AU  - Ahmed Chaouki Aouine
TI  - A fixed point theorem for $p$-contraction mappings in partially ordered metric spaces and application to ordinary differential equations
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2022
SP  - 15
EP  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2022_3_a1/
LA  - en
ID  - BASM_2022_3_a1
ER  - 
%0 Journal Article
%A Ahmed Chaouki Aouine
%T A fixed point theorem for $p$-contraction mappings in partially ordered metric spaces and application to ordinary differential equations
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2022
%P 15-21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2022_3_a1/
%G en
%F BASM_2022_3_a1
Ahmed Chaouki Aouine. A fixed point theorem for $p$-contraction mappings in partially ordered metric spaces and application to ordinary differential equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2022), pp. 15-21. http://geodesic.mathdoc.fr/item/BASM_2022_3_a1/

[1] M. Abbas, N. Talat, S. Radenović, “Common fixed points of four maps in partially ordered metric spaces”, Appl. Math. Lett., 24:9 (2011), 1520–1526 | DOI | MR | Zbl

[2] A. C. Aouine, A. Aliouche, “Coincidence and common fixed points theorem with an application in dynamic programming”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 3(94) (2020), 12–28 | MR | Zbl

[3] A. C. Aouine, A. Aliouche, “Fixed point theorems of Kannan type with an application to control theory”, Applied Mathematics E-Notes, 21 (2021), 238–249 | MR | Zbl

[4] S. Banach, “Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales”, Fund. Math., 3 (1922), 133–181 | DOI | MR

[5] J. Caristi, “Fixed point theorems for mappings satisfying the inwardness conditions”, Trans. Amer. Math. Soc., 215 (1976), 241–251 | DOI | MR | Zbl

[6] Lj. Ćirić, M. Abbas, R. Saadati, N. Hussain, “Common fixed points of almost generalized contractive mappings in ordered metric spaces”, Appl. Math. Comput., 217 (2011), 5784–5789 | MR | Zbl

[7] L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 12, American Mathematical Society, 1998

[8] H. K. Pathak, N. Shahzad, “Fixed points for generalized contractions and applications to control theory”, Nonlinear Analysis, 68 (2008), 2181–2193 | DOI | MR | Zbl