Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2022_3_a1, author = {Ahmed Chaouki Aouine}, title = {A fixed point theorem for $p$-contraction mappings in partially ordered metric spaces and application to ordinary differential equations}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {15--21}, publisher = {mathdoc}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2022_3_a1/} }
TY - JOUR AU - Ahmed Chaouki Aouine TI - A fixed point theorem for $p$-contraction mappings in partially ordered metric spaces and application to ordinary differential equations JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2022 SP - 15 EP - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2022_3_a1/ LA - en ID - BASM_2022_3_a1 ER -
%0 Journal Article %A Ahmed Chaouki Aouine %T A fixed point theorem for $p$-contraction mappings in partially ordered metric spaces and application to ordinary differential equations %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2022 %P 15-21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2022_3_a1/ %G en %F BASM_2022_3_a1
Ahmed Chaouki Aouine. A fixed point theorem for $p$-contraction mappings in partially ordered metric spaces and application to ordinary differential equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2022), pp. 15-21. http://geodesic.mathdoc.fr/item/BASM_2022_3_a1/
[1] M. Abbas, N. Talat, S. Radenović, “Common fixed points of four maps in partially ordered metric spaces”, Appl. Math. Lett., 24:9 (2011), 1520–1526 | DOI | MR | Zbl
[2] A. C. Aouine, A. Aliouche, “Coincidence and common fixed points theorem with an application in dynamic programming”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 3(94) (2020), 12–28 | MR | Zbl
[3] A. C. Aouine, A. Aliouche, “Fixed point theorems of Kannan type with an application to control theory”, Applied Mathematics E-Notes, 21 (2021), 238–249 | MR | Zbl
[4] S. Banach, “Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales”, Fund. Math., 3 (1922), 133–181 | DOI | MR
[5] J. Caristi, “Fixed point theorems for mappings satisfying the inwardness conditions”, Trans. Amer. Math. Soc., 215 (1976), 241–251 | DOI | MR | Zbl
[6] Lj. Ćirić, M. Abbas, R. Saadati, N. Hussain, “Common fixed points of almost generalized contractive mappings in ordered metric spaces”, Appl. Math. Comput., 217 (2011), 5784–5789 | MR | Zbl
[7] L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 12, American Mathematical Society, 1998
[8] H. K. Pathak, N. Shahzad, “Fixed points for generalized contractions and applications to control theory”, Nonlinear Analysis, 68 (2008), 2181–2193 | DOI | MR | Zbl