Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2022_1_a3, author = {Alexandr A. Moldovyan and Dmitriy N. Moldovyan}, title = {A new method for developing signature algorithms on finite non-commutative algebras}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {56--65}, publisher = {mathdoc}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2022_1_a3/} }
TY - JOUR AU - Alexandr A. Moldovyan AU - Dmitriy N. Moldovyan TI - A new method for developing signature algorithms on finite non-commutative algebras JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2022 SP - 56 EP - 65 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2022_1_a3/ LA - en ID - BASM_2022_1_a3 ER -
%0 Journal Article %A Alexandr A. Moldovyan %A Dmitriy N. Moldovyan %T A new method for developing signature algorithms on finite non-commutative algebras %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2022 %P 56-65 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2022_1_a3/ %G en %F BASM_2022_1_a3
Alexandr A. Moldovyan; Dmitriy N. Moldovyan. A new method for developing signature algorithms on finite non-commutative algebras. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2022), pp. 56-65. http://geodesic.mathdoc.fr/item/BASM_2022_1_a3/
[1] Agibalov G. P., Pankratova I. A., “Asymmetric cryptosystems on Boolean functions”, Prikl. Diskr. Mat., 40 (2018), 23–33 | DOI | MR | Zbl
[2] Alamelou Q., Blazy O., Cauchie S., Gaborit Ph., “A code-based group signature scheme”, Designs, Codes and Cryptography, 82 (2017), 469–493 | DOI | MR | Zbl
[3] Chiou S. Y., “Novel digital signature schemes based on factoring and discrete logarithms”, International Journal of Security and Its Applications, 10 (2016), 295–310 | DOI
[4] Ducas L., Kiltz E., Lepoint T., Lyubashevsky V., Schwabe P., Seiler G., Stehle D., "CRYSTALS-Dilithium: a lattice-based digital signature scheme, , 2017; https://eprint.iacr.org/2017/633.pdfhttps://pq-crystals.org/dilithium/index.shtml
[5] Ekert A., Jozsa R., “Quantum computation and Shor's factoring algorithm”, Reviews of Modern Physics, 68 (1996), 733–752 | DOI | MR
[6] ElGamal T., “A public key cryptosystem and a signature scheme based on discrete logarithms”, IEEE Transactions on Information Theory, IT-31 (1985), 469–472 | DOI | MR | Zbl
[7] Fast-Fourier lattice-based compact signatures over NTRU, https://falcon-sign.info/
[8] Hoffstein J., Pipher J., Schanck J. M., Silverman J. H., Whyte W., Zhang Zh., “Choosing parameters for NTRU Encrypt”, Cryptographers' Track at the RSA Conference – CTA-RSA 2017, LNCS, 10159, Springer, 2017, 3–18 | MR | Zbl
[9] Kuzmin A. S., Markov V. T., Mikhalev A. A., Mikhalev A. V., Nechaev A. A., “Cryptographic algorithms on groups and algebras”, Journal of Mathematical Sciences, 223 (2017), 629–641 | DOI | MR | Zbl
[10] Moldovyan D. N., “A practical digital signature scheme based on the hidden logarithm problem”, Computer Science Journal of Moldova, 29 (2021), 206–226 | MR
[11] Moldovyan D. N., “New form of the hidden logarithm problem and its algebraic support”, Bulletin of Academy of Sciences of Moldova. Mathematics, 2(93) (2020), 3–10 | MR | Zbl
[12] Moldovyan N. A., Moldovyan A. A., “Candidate for practical post-quantum signature scheme”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 16 (2020), 455–461 | DOI | MR
[13] Moldovyan N. A., Moldovyan A. A., “Finite non-commutative associative algebras as carriers of hidden discrete logarithm problem”, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming Computer Software, 12 (2019), 66–81 | DOI | Zbl
[14] Moldovyan N. A., Moldovyan A. A., “Digital signature scheme on the 2$\times$2 matrix algebra”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17 (2021), 254–261 | DOI | MR
[15] Moldovyan N. A., Moldovyanu P. A., “New primitives for digital signature algorithms”, Quasigroups and Related Systems, 17 (2009), 271–282 | MR | Zbl
[16] Moldovyan N. A., “Fast signatures based on non-cyclic finite groups”, Quasigroups and Related Systems, 18 (2010), 83–94 | MR | Zbl
[17] Moody D., NIST Status Update on the 3rd Round, , 2021 (accessed November 27, 2021) https://csrc.nist.gov/CSRC/media/Presentations/status-update-on-the-3rd-round/images-media/session-1-moody-nist-round-3-update.pdf
[18] Post-Quantum Cryptography. Round 3 Submissions. Round 3 Finalists: Digital Signature Algorithms, https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
[19] Rivest R. L., Shamir A., Adleman L. M., “A method for obtaining digital signatures and public key cryptosystems”, Communications of the ACM, 21 (1978), 120–126 | DOI | MR | Zbl
[20] Schnorr C. P., “Efficient signature generation by smart cards”, Journal of Cryptology, 4 (1991), 161–174 | DOI | MR | Zbl
[21] Shor P.W., “Polynomial-time algorithms for prime factorization and discrete logarithms on quantum computer”, SIAM Journal of Computing, 26 (1997), 1484–1509 | DOI | MR | Zbl
[22] Shuaiting Qiao, Wenbao Han, Yifa Li, Luyao Jiao, “Construction of Extended Multivariate Public Key Cryptosystems”, International Journal of Network Security, 8 (2016), 60–67
[23] Smolin J. A., Smith G., Vargo A., “Oversimplifying quantum factoring”, Nature, 499 (2013), 163–165 | DOI