Continuous extensions on Euclidean combinatorial configurations
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2022), pp. 3-21

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce a concept of the Euclidean combinatorial configuration as a mapping of a set of certain objects into a point of Euclidean space. We classify Euclidean combinatorial configurations sets based on their structure and constraints. The proposed typology forms the basis for studying continuous functional representations of combinatorial configurations. Special classes of functional extensions are introduced, their properties are described, and corresponding examples are given.
@article{BASM_2022_1_a0,
     author = {Oksana Pichugina and Sergiy Yakovlev},
     title = {Continuous extensions on {Euclidean} combinatorial configurations},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--21},
     publisher = {mathdoc},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2022_1_a0/}
}
TY  - JOUR
AU  - Oksana Pichugina
AU  - Sergiy Yakovlev
TI  - Continuous extensions on Euclidean combinatorial configurations
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2022
SP  - 3
EP  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2022_1_a0/
LA  - en
ID  - BASM_2022_1_a0
ER  - 
%0 Journal Article
%A Oksana Pichugina
%A Sergiy Yakovlev
%T Continuous extensions on Euclidean combinatorial configurations
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2022
%P 3-21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2022_1_a0/
%G en
%F BASM_2022_1_a0
Oksana Pichugina; Sergiy Yakovlev. Continuous extensions on Euclidean combinatorial configurations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2022), pp. 3-21. http://geodesic.mathdoc.fr/item/BASM_2022_1_a0/