Upper bounds for the number of limit cycles for a class of polynomial differential systems via the averaging method
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2021), pp. 72-87
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we study the number of limit cycles of polynomial differential systems of the form
\begin{equation*}
\left\{
\begin{array}{l}
\dot{x}=y \\
\dot{y}=-x-\varepsilon (h_{1}\left( x\right) y^{2\alpha }+g_{1}\left(
x\right) y^{2\alpha +1}+f_{1}\left( x\right) y^{2\alpha +2}) \\
\qquad-\varepsilon ^{2}(h_{2}\left( x\right) y^{2\alpha
}+g_{2}\left( x\right) y^{2\alpha +1}+f_{2}\left( x\right) y^{2\alpha +2})
\end{array}
\right.
\end{equation*}
where $m,n,k$ and $\alpha $ are positive integers, $h_{i}$, $g_{i}$ and $
f_{i}$ have degree $n,m$ and $k$, respectively for each $i=1,2$, and $
\varepsilon $ is a small parameter. We use the averaging theory of first and second order to provide an accurate upper bound of the number of limit cycles that bifurcate from the periodic orbits of the linear center $\dot{x}=y,\dot{y}=-x$. We give an example for which this bound is reached.
@article{BASM_2021_3_a6,
author = {S. Benadouane and A. Berbache and A. Bendjeddou},
title = {Upper bounds for the number of limit cycles for a class of polynomial differential systems via the averaging method},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {72--87},
publisher = {mathdoc},
number = {3},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2021_3_a6/}
}
TY - JOUR AU - S. Benadouane AU - A. Berbache AU - A. Bendjeddou TI - Upper bounds for the number of limit cycles for a class of polynomial differential systems via the averaging method JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2021 SP - 72 EP - 87 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2021_3_a6/ LA - en ID - BASM_2021_3_a6 ER -
%0 Journal Article %A S. Benadouane %A A. Berbache %A A. Bendjeddou %T Upper bounds for the number of limit cycles for a class of polynomial differential systems via the averaging method %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2021 %P 72-87 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2021_3_a6/ %G en %F BASM_2021_3_a6
S. Benadouane; A. Berbache; A. Bendjeddou. Upper bounds for the number of limit cycles for a class of polynomial differential systems via the averaging method. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2021), pp. 72-87. http://geodesic.mathdoc.fr/item/BASM_2021_3_a6/