Upper bounds for the number of limit cycles for a class of polynomial differential systems via the averaging method
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2021), pp. 72-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the number of limit cycles of polynomial differential systems of the form \begin{equation*} \left\{ \begin{array}{l} \dot{x}=y \\ \dot{y}=-x-\varepsilon (h_{1}\left( x\right) y^{2\alpha }+g_{1}\left( x\right) y^{2\alpha +1}+f_{1}\left( x\right) y^{2\alpha +2}) \\ \qquad-\varepsilon ^{2}(h_{2}\left( x\right) y^{2\alpha }+g_{2}\left( x\right) y^{2\alpha +1}+f_{2}\left( x\right) y^{2\alpha +2}) \end{array} \right. \end{equation*} where $m,n,k$ and $\alpha $ are positive integers, $h_{i}$, $g_{i}$ and $ f_{i}$ have degree $n,m$ and $k$, respectively for each $i=1,2$, and $ \varepsilon $ is a small parameter. We use the averaging theory of first and second order to provide an accurate upper bound of the number of limit cycles that bifurcate from the periodic orbits of the linear center $\dot{x}=y,\dot{y}=-x$. We give an example for which this bound is reached.
@article{BASM_2021_3_a6,
     author = {S. Benadouane and A. Berbache and A. Bendjeddou},
     title = {Upper bounds for the number of limit cycles for a class of polynomial differential systems via the averaging method},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {72--87},
     publisher = {mathdoc},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2021_3_a6/}
}
TY  - JOUR
AU  - S. Benadouane
AU  - A. Berbache
AU  - A. Bendjeddou
TI  - Upper bounds for the number of limit cycles for a class of polynomial differential systems via the averaging method
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2021
SP  - 72
EP  - 87
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2021_3_a6/
LA  - en
ID  - BASM_2021_3_a6
ER  - 
%0 Journal Article
%A S. Benadouane
%A A. Berbache
%A A. Bendjeddou
%T Upper bounds for the number of limit cycles for a class of polynomial differential systems via the averaging method
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2021
%P 72-87
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2021_3_a6/
%G en
%F BASM_2021_3_a6
S. Benadouane; A. Berbache; A. Bendjeddou. Upper bounds for the number of limit cycles for a class of polynomial differential systems via the averaging method. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2021), pp. 72-87. http://geodesic.mathdoc.fr/item/BASM_2021_3_a6/

[1] Buica A., Llibre J., “Averaging methods for finding periodic orbits via Brouwer degree”, Bull. Sci. Math., 128:1 (2004), 7–22 | DOI | MR | Zbl

[2] Chen X., Llibre J., Zhang Z., “Sufficient conditions for the existence of at least n or exactly n limit cycles for the Lienard differential systems”, J. Differential Equations, 242:1 (2007), 11–23 | DOI | MR | Zbl

[3] Garca B., Llibre J., Pérez del Rio J.S., “Limit cycles of generalized Liénard polynomial differential systems via averaging theory”, Chaos Solitons and Fractals, 62–63 (2014), 1–9 | DOI | MR

[4] Gasull A., Torregrosa J., “Small-amplitude limit cycles in Lienard systems via multiplicity”, J. Differ. Equations, 159:1 (1999), 186–211 | DOI | MR | Zbl

[5] Giné J., “Higher order limit cycle bifurcations from non-degenerate centers”, Appl. Math. Comput., 218:17 (2012), 8853–8860 | MR | Zbl

[6] Giné J., Mallol J., “Minimum number of ideal generators for a linear center perturbed by homogeneous polynomials”, Nonlinear Anal., 71:12 (2009), 132–137 | MR

[7] Gradshteyn I.S., Ryzhik I.M., Table of integrals, series, and products, Academic Press, Amsterdam, 2014 | MR

[8] Hilbert D., “Mathematische Probleme”, Lecture at the Second International Congress of Mathematicians, Nachr. Ges. Wiss. Göttingen Math Phys. Kl., Paris, 1900, 253–297 | Zbl

[9] Ilyashenko Y., “Centennial history of Hilbert's 16th problem”, Bull. Am. Math. Soc., 39:3 (2002), 301–354 | DOI | MR | Zbl

[10] Liénard A., “Etude des oscillations entretenues”, Revue générale de l'électricité, 23 (1928), 901–912; 946–954

[11] Lins A., De Melo W., Pugh C.C., “On Liénard's equation”, Lecture Notes Math., 597, Springer, Berlin, 1977, 335–357 | DOI | MR

[12] Llibre J. , Mereu A.C., Teixeira M.A., “Limit cycles of the generalized polynomial Liénard differential equations”, Math. Proc. Camb. Philos. Soc., 148:2 (2010), 363–383 | DOI | MR | Zbl

[13] Llibre J., Valls C., “On the number of limit cycles of a class of polynomial differential systems”, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 468:2144 (2012), 2347–2360 | MR | Zbl

[14] Lloyd N. G., Lynch S., “Small-amplitude limit cycles of certain Liénard systems”, Proc. R. Soc. Lond., Ser. A, 418:1854 (1988), 199–208 | DOI | MR | Zbl