Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2021_3_a6, author = {S. Benadouane and A. Berbache and A. Bendjeddou}, title = {Upper bounds for the number of limit cycles for a class of polynomial differential systems via the averaging method}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {72--87}, publisher = {mathdoc}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2021_3_a6/} }
TY - JOUR AU - S. Benadouane AU - A. Berbache AU - A. Bendjeddou TI - Upper bounds for the number of limit cycles for a class of polynomial differential systems via the averaging method JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2021 SP - 72 EP - 87 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2021_3_a6/ LA - en ID - BASM_2021_3_a6 ER -
%0 Journal Article %A S. Benadouane %A A. Berbache %A A. Bendjeddou %T Upper bounds for the number of limit cycles for a class of polynomial differential systems via the averaging method %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2021 %P 72-87 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2021_3_a6/ %G en %F BASM_2021_3_a6
S. Benadouane; A. Berbache; A. Bendjeddou. Upper bounds for the number of limit cycles for a class of polynomial differential systems via the averaging method. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2021), pp. 72-87. http://geodesic.mathdoc.fr/item/BASM_2021_3_a6/
[1] Buica A., Llibre J., “Averaging methods for finding periodic orbits via Brouwer degree”, Bull. Sci. Math., 128:1 (2004), 7–22 | DOI | MR | Zbl
[2] Chen X., Llibre J., Zhang Z., “Sufficient conditions for the existence of at least n or exactly n limit cycles for the Lienard differential systems”, J. Differential Equations, 242:1 (2007), 11–23 | DOI | MR | Zbl
[3] Garca B., Llibre J., Pérez del Rio J.S., “Limit cycles of generalized Liénard polynomial differential systems via averaging theory”, Chaos Solitons and Fractals, 62–63 (2014), 1–9 | DOI | MR
[4] Gasull A., Torregrosa J., “Small-amplitude limit cycles in Lienard systems via multiplicity”, J. Differ. Equations, 159:1 (1999), 186–211 | DOI | MR | Zbl
[5] Giné J., “Higher order limit cycle bifurcations from non-degenerate centers”, Appl. Math. Comput., 218:17 (2012), 8853–8860 | MR | Zbl
[6] Giné J., Mallol J., “Minimum number of ideal generators for a linear center perturbed by homogeneous polynomials”, Nonlinear Anal., 71:12 (2009), 132–137 | MR
[7] Gradshteyn I.S., Ryzhik I.M., Table of integrals, series, and products, Academic Press, Amsterdam, 2014 | MR
[8] Hilbert D., “Mathematische Probleme”, Lecture at the Second International Congress of Mathematicians, Nachr. Ges. Wiss. Göttingen Math Phys. Kl., Paris, 1900, 253–297 | Zbl
[9] Ilyashenko Y., “Centennial history of Hilbert's 16th problem”, Bull. Am. Math. Soc., 39:3 (2002), 301–354 | DOI | MR | Zbl
[10] Liénard A., “Etude des oscillations entretenues”, Revue générale de l'électricité, 23 (1928), 901–912; 946–954
[11] Lins A., De Melo W., Pugh C.C., “On Liénard's equation”, Lecture Notes Math., 597, Springer, Berlin, 1977, 335–357 | DOI | MR
[12] Llibre J. , Mereu A.C., Teixeira M.A., “Limit cycles of the generalized polynomial Liénard differential equations”, Math. Proc. Camb. Philos. Soc., 148:2 (2010), 363–383 | DOI | MR | Zbl
[13] Llibre J., Valls C., “On the number of limit cycles of a class of polynomial differential systems”, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 468:2144 (2012), 2347–2360 | MR | Zbl
[14] Lloyd N. G., Lynch S., “Small-amplitude limit cycles of certain Liénard systems”, Proc. R. Soc. Lond., Ser. A, 418:1854 (1988), 199–208 | DOI | MR | Zbl