Postoptimal analysis of a finite cooperative game
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2021), pp. 121-136
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a finite cooperative game of several players with parameterized concept of equilibrium (optimality principles), when relations between players in coalition are based on the Pareto maximum. Introduction of this optimality principle allows to connect classical notions of the Pareto optimality and Nash equilibrium. Lower and upper bounds are obtained for the strong stability radius of the game under parameters perturbations with the assumption that arbitrary Hölder norms are defined in the space of outcomes and criteria space. Game classes with an infinite radius are defined.
@article{BASM_2021_1_a7,
author = {Vladimir Emelichev and Olga Karelkina},
title = {Postoptimal analysis of a finite cooperative game},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {121--136},
publisher = {mathdoc},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2021_1_a7/}
}
TY - JOUR AU - Vladimir Emelichev AU - Olga Karelkina TI - Postoptimal analysis of a finite cooperative game JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2021 SP - 121 EP - 136 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2021_1_a7/ LA - en ID - BASM_2021_1_a7 ER -
Vladimir Emelichev; Olga Karelkina. Postoptimal analysis of a finite cooperative game. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2021), pp. 121-136. http://geodesic.mathdoc.fr/item/BASM_2021_1_a7/