Algebraic view over homogeneous linear recurrent processes
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2021), pp. 99-109

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the algebraic properties of the deterministic processes with dynamic represented by a homogeneous linear recurrence over the field $\mathbb{C}$ are studied. It is started with an overview of homogeneous linear recurrent processes over $\mathbb{C}$ and its subsets. Next, it is gone deeper into homogeneous linear recurrent processes over numerical rings. After that, the recurrence criteria over sign-based ring subsets are analyzed. Also, the deterministic processes with dynamic represented by a Littlewood, Newman or Borwein homogeneous linear recurrence are considered.
@article{BASM_2021_1_a5,
     author = {Alexandru Lazari},
     title = {Algebraic view over homogeneous linear recurrent processes},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {99--109},
     publisher = {mathdoc},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2021_1_a5/}
}
TY  - JOUR
AU  - Alexandru Lazari
TI  - Algebraic view over homogeneous linear recurrent processes
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2021
SP  - 99
EP  - 109
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2021_1_a5/
LA  - en
ID  - BASM_2021_1_a5
ER  - 
%0 Journal Article
%A Alexandru Lazari
%T Algebraic view over homogeneous linear recurrent processes
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2021
%P 99-109
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2021_1_a5/
%G en
%F BASM_2021_1_a5
Alexandru Lazari. Algebraic view over homogeneous linear recurrent processes. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2021), pp. 99-109. http://geodesic.mathdoc.fr/item/BASM_2021_1_a5/