On non-discrete topologization of some countable skew fields
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2021), pp. 84-92
Voir la notice de l'article provenant de la source Math-Net.Ru
If for any finite subset $M$ of a countable skew field $ R $ there exists an infinite subset $ S\subseteq R $ such that $r\cdot m=m\cdot r$ for any $r\in S $ and for any $m\in M$, then the skew field $ R $ admits:
– A non-discrete Hausdorff skew field topology $ \tau _0 $.
– Continuum of non-discrete Hausdorff skew field topologies which are stronger than the topology $ \tau _0 $ and such that $ \sup \{\tau _1, \tau _2 \} $ is the discrete topology for any different topologies $ \tau_1$ and $\tau _2 $;
– Continuum of non-discrete Hausdorff skew field topologies which are stronger than $ \tau _0 $ and such that any two of these topologies are comparable;
– Two to the power of continuum Hausdorff skew field topologies stronger than $ \tau _0 $, and each of them is a coatom in the lattice of all skew field topologies of the skew fields.
@article{BASM_2021_1_a3,
author = {V. I. Arnautov and G. N. Ermakova},
title = {On non-discrete topologization of some countable skew fields},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {84--92},
publisher = {mathdoc},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2021_1_a3/}
}
TY - JOUR AU - V. I. Arnautov AU - G. N. Ermakova TI - On non-discrete topologization of some countable skew fields JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2021 SP - 84 EP - 92 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2021_1_a3/ LA - en ID - BASM_2021_1_a3 ER -
V. I. Arnautov; G. N. Ermakova. On non-discrete topologization of some countable skew fields. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2021), pp. 84-92. http://geodesic.mathdoc.fr/item/BASM_2021_1_a3/