Numerical simulation of nonlinear processes in semiconductor devices with the application of the Newton's method for linearization
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2020), pp. 97-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article relates to the use of Newton's method and Scharfetter–Gummel scheme, to linearize and discretize the equations, for numerical modeling of nonlinear processes in semiconductor devices. The mathematical model of the problem represents a system of nonlinear differential equations, in the unknowns $\varphi$–electrostatic potential, $~n, p $–the concentrations of electrons and holes, respectively. The problem is further complicated by the fact that the boundary conditions are of two types: the Dirichlet conditions and the Neumman conditions, which act on different portions of the boundary. The subproblems that were solved in this paper: linearization of nonlinear differential equations, using Newton's method; discretization of equations, using Scharfetter–Gummel scheme. The obtained systems have five diagonal and nonsymmetrical matrices. The numerical method of Bi–Conjugate Gradients was used to solve the systems.
@article{BASM_2020_3_a6,
     author = {Galina Sprincean},
     title = {Numerical simulation of nonlinear processes in semiconductor devices with the application of the {Newton's} method for linearization},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {97--108},
     publisher = {mathdoc},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2020_3_a6/}
}
TY  - JOUR
AU  - Galina Sprincean
TI  - Numerical simulation of nonlinear processes in semiconductor devices with the application of the Newton's method for linearization
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2020
SP  - 97
EP  - 108
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2020_3_a6/
LA  - en
ID  - BASM_2020_3_a6
ER  - 
%0 Journal Article
%A Galina Sprincean
%T Numerical simulation of nonlinear processes in semiconductor devices with the application of the Newton's method for linearization
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2020
%P 97-108
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2020_3_a6/
%G en
%F BASM_2020_3_a6
Galina Sprincean. Numerical simulation of nonlinear processes in semiconductor devices with the application of the Newton's method for linearization. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2020), pp. 97-108. http://geodesic.mathdoc.fr/item/BASM_2020_3_a6/

[1] W. H. A. Schilders, E. J. W. ter Maten, Special Volume of Handbook of Numerical Analysis, Numerical Methods in Electromagnetics, XIII, ELSEVIER, Amsterdam. Guest, 2005, 317–443 | MR

[2] A. S. Grove, Physics and Technology of Semiconductor Devices, Editura Tehnică, Bucharest, 1973

[3] E. Şt. Lakatoş, Modelarea dispozitivelor semiconductoare active, Ed. Matrixrom, România, 2009

[4] A. A. Samarskii, A. V. Gulin, The numerical methods, Nauka, M., 1989 | MR

[5] D. L. Scharfetter, H. K. Gummel, “Large-Signal Analysis of a Silicon Read Diode Oscillator”, IEEE Trans. Electron Devices, ED-16 (1969), 64–77 | DOI

[6] D. Vasileska, S. M. Goodnick, G. Klimeck, Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation, CRC Press, Amazon, 2010

[7] N. Pinakpani, 1D Drift Diffusion simulator for modeling pn-junction Diode, Arizona State University, 2008, 11–13

[8] N. Andrei, An adaptive conjugate–gradient algorithm for large scale unconstrained optimization, Elsevier AMC, North Holland, 2016, 83–91 | MR

[9] G. Sprincean, “Modelarea diodei semiconductoare pentru cazul unidimensional”, Studia Universitatis Seria "Ştiinţe exacte şi economice", 7(107), Chişinău, 2017, 159–165