Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2020_3_a5, author = {Jonibek Sh. Abdullayev}, title = {An analogue of {Bremermann's} theorem on finding the {Bergman} kernel for the {Cartesian} product of the classical domains ${{\Re }_{I}}\left( m,k \right)$ and ${{\Re }_{II}}\left( n \right)$}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {88--96}, publisher = {mathdoc}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2020_3_a5/} }
TY - JOUR AU - Jonibek Sh. Abdullayev TI - An analogue of Bremermann's theorem on finding the Bergman kernel for the Cartesian product of the classical domains ${{\Re }_{I}}\left( m,k \right)$ and ${{\Re }_{II}}\left( n \right)$ JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2020 SP - 88 EP - 96 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2020_3_a5/ LA - en ID - BASM_2020_3_a5 ER -
%0 Journal Article %A Jonibek Sh. Abdullayev %T An analogue of Bremermann's theorem on finding the Bergman kernel for the Cartesian product of the classical domains ${{\Re }_{I}}\left( m,k \right)$ and ${{\Re }_{II}}\left( n \right)$ %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2020 %P 88-96 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2020_3_a5/ %G en %F BASM_2020_3_a5
Jonibek Sh. Abdullayev. An analogue of Bremermann's theorem on finding the Bergman kernel for the Cartesian product of the classical domains ${{\Re }_{I}}\left( m,k \right)$ and ${{\Re }_{II}}\left( n \right)$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2020), pp. 88-96. http://geodesic.mathdoc.fr/item/BASM_2020_3_a5/