An analogue of Bremermann's theorem on finding the Bergman kernel for the Cartesian product of the classical domains ${{\Re }_{I}}\left( m,k \right)$ and ${{\Re }_{II}}\left( n \right)$
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2020), pp. 88-96

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, an analogue of Bremermann's theorem on finding the Bergman kernel is obtained for the Cartesian product of classical domains. For this purpose, the groups of automorphisms of the considered domains are used, i.e., the Bergman kernels are constructed for the Cartesian product of classical domains, without applying complete orthonormal systems.
@article{BASM_2020_3_a5,
     author = {Jonibek Sh. Abdullayev},
     title = {An analogue of {Bremermann's} theorem on finding the {Bergman} kernel for the {Cartesian} product of the classical domains ${{\Re }_{I}}\left( m,k \right)$ and ${{\Re }_{II}}\left( n \right)$},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {88--96},
     publisher = {mathdoc},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2020_3_a5/}
}
TY  - JOUR
AU  - Jonibek Sh. Abdullayev
TI  - An analogue of Bremermann's theorem on finding the Bergman kernel for the Cartesian product of the classical domains ${{\Re }_{I}}\left( m,k \right)$ and ${{\Re }_{II}}\left( n \right)$
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2020
SP  - 88
EP  - 96
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2020_3_a5/
LA  - en
ID  - BASM_2020_3_a5
ER  - 
%0 Journal Article
%A Jonibek Sh. Abdullayev
%T An analogue of Bremermann's theorem on finding the Bergman kernel for the Cartesian product of the classical domains ${{\Re }_{I}}\left( m,k \right)$ and ${{\Re }_{II}}\left( n \right)$
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2020
%P 88-96
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2020_3_a5/
%G en
%F BASM_2020_3_a5
Jonibek Sh. Abdullayev. An analogue of Bremermann's theorem on finding the Bergman kernel for the Cartesian product of the classical domains ${{\Re }_{I}}\left( m,k \right)$ and ${{\Re }_{II}}\left( n \right)$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2020), pp. 88-96. http://geodesic.mathdoc.fr/item/BASM_2020_3_a5/