Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2020_3_a1, author = {Ahmed Chaouki Aouine and Abdelkrim Aliouche}, title = {Coincidence and common fixed points theorem with an application in dynamic programming}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {12--28}, publisher = {mathdoc}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2020_3_a1/} }
TY - JOUR AU - Ahmed Chaouki Aouine AU - Abdelkrim Aliouche TI - Coincidence and common fixed points theorem with an application in dynamic programming JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2020 SP - 12 EP - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2020_3_a1/ LA - en ID - BASM_2020_3_a1 ER -
%0 Journal Article %A Ahmed Chaouki Aouine %A Abdelkrim Aliouche %T Coincidence and common fixed points theorem with an application in dynamic programming %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2020 %P 12-28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2020_3_a1/ %G en %F BASM_2020_3_a1
Ahmed Chaouki Aouine; Abdelkrim Aliouche. Coincidence and common fixed points theorem with an application in dynamic programming. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2020), pp. 12-28. http://geodesic.mathdoc.fr/item/BASM_2020_3_a1/
[1] Abbas M., Jungck G., “Common fixed point results for noncommuting mappings without continuity in cone metric spaces”, J. Math. Anal. Appl., 341:1 (2008), 416–420 | DOI | MR | Zbl
[2] Abbas M., Khan M. A., “Common fixed point theorem of two mappings satisfying a generalized weak contractive condition”, Inter. J. Math. and Math. Sci., 2009, 131068, 9 pp. | MR | Zbl
[3] Banach S., “Sur les opérations dans les ensembles abstraits et leur applications aux equations integrales”, Fund. Math., 3 (1922), 133–181 | DOI | MR | Zbl
[4] Bhakta P. C., Mitra S., “Some existence theorems for functional equations arising in dynamic programming”, J. Math. Anal. Appl., 98 (1984), 348–362 | DOI | MR | Zbl
[5] Bellman R., Lee E. S., “Functional equations arising in dynamic programming”, Aequationes Math., 17 (1978), 1–18 | DOI | MR | Zbl
[6] Berinde V., “Approximating fixed points of weak contractions using Picard iteration”, Nonlinear Anal. Forum., 9:1 (2004), 43–53 | MR | Zbl
[7] Berinde V., “Approximating common fixed points of noncommuting almost contractions in metric spaces”, Fixed Point Theory, 11:2 (2010), 179–188 | MR | Zbl
[8] Caristi J., Kirk W. A., “Geometric fixed point theory and inwardness conditions”, Lecture Notes in Math., 490, Springer, Berlin, 1975, 74–83 | DOI | MR
[9] Caristi J., “Fixed point theorems for mappings satisfying inwardness conditions”, Trans. Amer. Math. Soc., 215 (1976), 241–251 | DOI | MR | Zbl
[10] Chandok S., Karapinar E., “Common fixed point of generalized rational type contraction mappings in partially ordered metric spaces”, Thai J. Math., 11:2 (2013), 251–260 | MR | Zbl
[11] Chandok S., Mukheimer A., Hussain A., Paunović L., “Picard-Jungck Operator for a Pair of Mappings and Simulation Type Functions”, Mathematics, 7:5 (2019), 461 | DOI
[12] Cirić L. B., “A generalization of Banach's contraction principle”, Proc. Amer. Math. Soc., 45 (1974), 267–273 | MR | Zbl
[13] Cirić L. B., “On some maps with a nonunique fixed point”, Publ. Inst. Math., 17:31 (1974), 52–58 | MR | Zbl
[14] Jungck G., “Commuting mappings and fixed points”, Amer. Math. Monthly, 83:4 (1976), 261–263 | DOI | MR | Zbl
[15] Kalinde A. K., Mishra S. N., Pathak H. K., “Some results on common fixed points with applications”, Fixed Point Theory, 6:2 (2005), 285–301 | MR | Zbl
[16] Kannan V., “Some results on fixed points II”, Amer. Math. Monthly, 76 (1969), 405–408 | MR | Zbl
[17] Kirk W. A., “Fixed points of asymptotic contractions”, J. Math. Anal. Appl., 277 (2003), 645–650 | DOI | MR | Zbl
[18] Kirk W. A., “Contraction mappings and extensions”, Handbook of Metric Fixed Point Theory, eds. W.A. Kirk, B. Sims, Kluwer Academic Publishers, Dordrecht, 2001, 1–34 | MR | Zbl
[19] Khojasteh F., M. Abbas M., Costache S., “Two new types of fixed point theorems in complete metric spaces”, Abstract Appl. Anal., Article, 2014, 5 pp. | MR
[20] Leader S., “Equivalent Cauchy sequences and contractive fixed points in metric spaces”, Studia Math., 76 (1983), 63–67 | DOI | MR | Zbl
[21] Li J., Fu M., Liu Z., Kang S. M., “A common fixed point theorem and its application in dynamic programming”, Appl. Math. Sci., 2:17 (2008), 829–842 | MR | Zbl
[22] Liu Z., “Compatible mappings and fixed points”, Acta Sci. Math (Szeged), 65 (1999), 371–383 | MR | Zbl
[23] Liu Z., Agarwa R. P., Kang S. M., “On solvability of functional equations and system of functional equations arising in dynamic programming”, J. Math. Anal. Appl., 297 (2004), 111–130 | DOI | MR | Zbl
[24] Liu Z., Guo Z., Kang S. M., Shim S. H., “Common fixed point theorems for compatible mappings of type (P) and an application to dynamic programming”, J. Appl. Math. Inform., 26:1–2 (2008), 61–73
[25] Liu Z., Liu M., Jung C. Y., Kang S. M., “Common fixed point theorems with applications in dynamic programming”, Appl. Math. Sci., 2:44 (2008), 2173–2186 | MR | Zbl
[26] Liu Z., Liu M., Kim H. K., Kang S. M., “Common fixed point theorems with applications to the solutions of functional equations arising in dynamic programming”, Commun. Korean Math. Soc., 24:1 (2009), 67–83 | DOI | MR | Zbl
[27] Meir A., E. Keeler., “A theorem on contraction mappings”, J. Math. Anal. Appl., 28 (1969), 326–329 | DOI | MR | Zbl
[28] Nashine H. K., Samet B., “Fixed point results for mappings satisfying ($\psi $, $\varphi $)-weakly contractive condition in partially ordered metric spaces”, Nonlinear Anal., 74 (2011), 2201–2209 | DOI | MR | Zbl
[29] Pathak H. K., Cho Y. J., Kang S. M., Lee B. S., “Fixed point theorems for compatible mappings of type (P ) and applications to dynamic programming”, Le Matematiche, Fasc. I, 50 (1995), 15–33 | MR | Zbl
[30] Picard E., “Mémoire sur la théorie des equations aux dérivées partielles et la méthode des approximations successives”, J. Math. Pures Appl., 6:4 (1890), 145–210
[31] Rhoades B. E., “Two New Fixed Point Theorems”, Gen. Math. Notes, 27:2 (2015), 123–132 | MR
[32] Rus I. A., “Weakly Picard mappings”, Comment. Math. Univ. Carol., 34:4 (1993), 769–773 | MR | Zbl
[33] Rus I. A., “Picard mappings”, I. Studia Univ. Babes-Bolyai Math., 33:2 (1988), 70–73 | MR | Zbl
[34] Rus I. A., “Picard operators and applications”, Sci. Math., 58 (2003), 191–219 | MR | Zbl
[35] Rus I. A., Petrusel A., Serban M. A., “Weakly Picard operators: Equivalent definitions applications and open problems”, Fixed Point Theory, 7 (2006), 3–22 | MR
[36] Samet B., Vetro C., Vetro P., “Fixed point theorems for $\alpha $–$\psi $ contractive type mappings”, Nonlinear Anal., 75 (2012), 2154–2165 | DOI | MR | Zbl
[37] Sessa S., “On a weak commutativity condition of mappings in fixed point considerations”, Publ. Inst. Math., 32:46 (1982), 149–153 | MR | Zbl
[38] Singh., Bhatnagar C., Mishra S. N., “Stability of Jungck-type iterative procedures”, Int. J. Math. Math. Sci., 19 (2005), 3035–3043 | DOI | MR | Zbl
[39] Subrahmanyam P. V., “Remarks on some fixed point theorems related to Banach's contraction principle”, J. Math. Phys. Sci., 8 (1974), 445–457 | MR
[40] Suzuki T., “A new type of fixed point theorem in metric spaces”, Nonlinear Anal., 71 (2009), 5313–5317 | DOI | MR | Zbl
[41] Suzuki T., “A sufficient and necessary condition for the convergence of the sequence of successive approximations to a unique fixed point”, Proc. Amer. Math. Soc., 136 (2008), 4089–4093 | DOI | MR | Zbl