Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2020_2_a5, author = {N. A. Moldovyan}, title = {Signature schemes on algebras, satisfying enhanced criterion of post-quantum security}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {62--67}, publisher = {mathdoc}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2020_2_a5/} }
TY - JOUR AU - N. A. Moldovyan TI - Signature schemes on algebras, satisfying enhanced criterion of post-quantum security JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2020 SP - 62 EP - 67 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2020_2_a5/ LA - en ID - BASM_2020_2_a5 ER -
%0 Journal Article %A N. A. Moldovyan %T Signature schemes on algebras, satisfying enhanced criterion of post-quantum security %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2020 %P 62-67 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2020_2_a5/ %G en %F BASM_2020_2_a5
N. A. Moldovyan. Signature schemes on algebras, satisfying enhanced criterion of post-quantum security. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2020), pp. 62-67. http://geodesic.mathdoc.fr/item/BASM_2020_2_a5/
[1] Post-Quantum Cryptography. 9th International Conference (Fort Lauderdale, FL, USA, April 9-11, 2018), LNCS, 10786, Springer Verlag, 2018 | Zbl
[2] PQCrypto 2019, Proceedings of the 10th International Conference (Chongqing, China, May 8-10, 2019), LNCS, 11505, Springer Verlag, 2019 | Zbl
[3] Shor P. W., “Polynomial-time algorithms for prime factorization and discrete logarithms on quantum computer”, SIAM Journal of Computing, 26 (1997), 1484–1509 | DOI | MR | Zbl
[4] Smolin J. A., Smith G., Vargo A., “Oversimplifying quantum factoring”, Nature, 499:7457 (2013), 163–165 | DOI
[5] A. Ekert, R. Jozsa, “Quantum computation and Shorś factoring algorithm”, Rev. Mod. Phys., 68 (1996), 733 | DOI | MR
[6] Jozsa R., “Quantum algorithms and the Fourier transform”, Proc. Roy. Soc. London Ser A, 454 (1998), 323–337 | DOI | MR | Zbl
[7] Yan S. Y., Quantum Attacks on Public-Key Cryptosystems, Springer, 2014, 207 pp.
[8] Moldovyan D. N., “Non-Commutative Finite Groups as Primitive of Public-Key Cryptoschemes”, Quasigroups and Related Systems, 18:2 (2010), 165–176 | MR | Zbl
[9] Kuzmin A. S., Markov V. T., Mikhalev A. A., Mikhalev A. V., Nechaev A. A., “Cryptographic Algorithms on Groups and Algebras”, Journal of Mathematical Sciences, 223:5 (2017), 629–641 | DOI | MR | Zbl
[10] Moldovyan N. A., Moldovyan A. A., “Finite Non-commutative Associative Algebras as Carriers of Hidden Discrete Logarithm Problem”, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming Computer Software, 12:1 (2019), 66–81 | Zbl
[11] Moldovyan N. A., “Finite Non-commutative Associative Algebras for Setting the Hidden Discrete Logarithm Problem and Post-quantum Cryptoschemes on Its Base”, Buletinul Academiei de Stiinte a Republicii Moldova. Matematica, 2019, no. 1 (89), 71–78 | MR | Zbl
[12] Schnorr C.P., “Efficient signature generation by smart cards”, J. Cryptology, 4 (1991), 161–174 | DOI | MR | Zbl
[13] Moldovyan A. A., Moldovyan N. A., “Post-quantum signature algorithms based on the hidden discrete logarithm problem”, Computer Science J. of Moldova, 26:3(78) (2018), 301–313 | MR | Zbl
[14] Moldovyan N. A., Abrosimov I. K., “Post-quantum electronic digital signature scheme based on the enhanced form of the hidden discrete logarithm problem”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:2 (2019), 212–220 | DOI | MR
[15] D. N. Moldovyan, “New Form of the Hidden Logarithm Problem and Its Algebraic Support”, Buletinul Academiei de Stiinte a Republicii Moldova. Matematica, 2020, no. 2 (93), 3–10 | MR | Zbl
[16] First NIST standardization conference (April 11–13, 2018) http://prometheuscrypt.gforge.inria.fr/2018-04-18.pqc2018.html
[17] Moldovyan N. A., “Unified Method for Defining Finite Associative Algebras of Arbitrary Even Dimensions”, Quasigroups and Related Systems, 26:2 (2018), 263–270 | MR | Zbl