Interior angle sums of geodesic triangles in $\mathbf{S^2}\times\mathbf{R}$ and $\mathbf{H^2}\times\mathbf{R}$ geometries
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2020), pp. 44-61

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we study $\mathbf{S^2}\times\mathbf{R}$ and $\mathbf{H^2}\times\mathbf{R}$ geometries, which are homogeneous Thurston $3$-geometries. We analyse the interior angle sums of geodesic triangles in both geometries and we prove that in $\mathbf{S^2}\times\mathbf{R}$ space it can be larger than or equal to $\pi$ and in $\mathbf{H^2}\times\mathbf{R}$ space the angle sums can be less than or equal to $\pi$. This proof is a new direct approach to the issue and it is based on the projective model of $\mathbf{S^2}\times\mathbf{R}$ and $\mathbf{H^2}\times\mathbf{R}$ geometries described by E. Molnár in [7].
@article{BASM_2020_2_a4,
     author = {Jen\H{o} Szirmai},
     title = {Interior angle sums of geodesic triangles in $\mathbf{S^2}\times\mathbf{R}$ and $\mathbf{H^2}\times\mathbf{R}$ geometries},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {44--61},
     publisher = {mathdoc},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2020_2_a4/}
}
TY  - JOUR
AU  - Jenő Szirmai
TI  - Interior angle sums of geodesic triangles in $\mathbf{S^2}\times\mathbf{R}$ and $\mathbf{H^2}\times\mathbf{R}$ geometries
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2020
SP  - 44
EP  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2020_2_a4/
LA  - en
ID  - BASM_2020_2_a4
ER  - 
%0 Journal Article
%A Jenő Szirmai
%T Interior angle sums of geodesic triangles in $\mathbf{S^2}\times\mathbf{R}$ and $\mathbf{H^2}\times\mathbf{R}$ geometries
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2020
%P 44-61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2020_2_a4/
%G en
%F BASM_2020_2_a4
Jenő Szirmai. Interior angle sums of geodesic triangles in $\mathbf{S^2}\times\mathbf{R}$ and $\mathbf{H^2}\times\mathbf{R}$ geometries. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2020), pp. 44-61. http://geodesic.mathdoc.fr/item/BASM_2020_2_a4/