Interior angle sums of geodesic triangles in $\mathbf{S^2}\times\mathbf{R}$ and $\mathbf{H^2}\times\mathbf{R}$ geometries
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2020), pp. 44-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we study $\mathbf{S^2}\times\mathbf{R}$ and $\mathbf{H^2}\times\mathbf{R}$ geometries, which are homogeneous Thurston $3$-geometries. We analyse the interior angle sums of geodesic triangles in both geometries and we prove that in $\mathbf{S^2}\times\mathbf{R}$ space it can be larger than or equal to $\pi$ and in $\mathbf{H^2}\times\mathbf{R}$ space the angle sums can be less than or equal to $\pi$. This proof is a new direct approach to the issue and it is based on the projective model of $\mathbf{S^2}\times\mathbf{R}$ and $\mathbf{H^2}\times\mathbf{R}$ geometries described by E. Molnár in [7].
@article{BASM_2020_2_a4,
     author = {Jen\H{o} Szirmai},
     title = {Interior angle sums of geodesic triangles in $\mathbf{S^2}\times\mathbf{R}$ and $\mathbf{H^2}\times\mathbf{R}$ geometries},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {44--61},
     publisher = {mathdoc},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2020_2_a4/}
}
TY  - JOUR
AU  - Jenő Szirmai
TI  - Interior angle sums of geodesic triangles in $\mathbf{S^2}\times\mathbf{R}$ and $\mathbf{H^2}\times\mathbf{R}$ geometries
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2020
SP  - 44
EP  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2020_2_a4/
LA  - en
ID  - BASM_2020_2_a4
ER  - 
%0 Journal Article
%A Jenő Szirmai
%T Interior angle sums of geodesic triangles in $\mathbf{S^2}\times\mathbf{R}$ and $\mathbf{H^2}\times\mathbf{R}$ geometries
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2020
%P 44-61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2020_2_a4/
%G en
%F BASM_2020_2_a4
Jenő Szirmai. Interior angle sums of geodesic triangles in $\mathbf{S^2}\times\mathbf{R}$ and $\mathbf{H^2}\times\mathbf{R}$ geometries. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2020), pp. 44-61. http://geodesic.mathdoc.fr/item/BASM_2020_2_a4/

[1] Brodaczewska K., Elementargeometrie in $\mathbf{Nil}$, Dissertation (Dr. rer. nat.), Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden, 2014

[2] Chavel I., Riemannian Geometry: A Modern Introduction, Cambridge Studies in Advances Mathematics, 2006 | MR | Zbl

[3] Cheeger J., Ebin D.G., Comparison Theorems in Riemannian Geometry, American Mathematical Society, 2006 | MR

[4] Csima G., Szirmai J., “Interior angle sum of translation and geodesic triangles in $\widetilde{\mathbf{SL}_2\mathbf{R}}$ space”, Filomat, 32:14 (2018), 5023–5036 | DOI | MR

[5] Kobayashi S., Nomizu K., Foundation of differential geometry, v. I, Interscience, Wiley, New York, 1963 | MR

[6] Milnor J., “Curvatures of left Invariant metrics on Lie groups”, Advances in Math., 21 (1976), 293–329 | DOI | MR | Zbl

[7] Molnár E., “The projective interpretation of the eight 3-dimensional homogeneous geometries”, Beitr. Algebra Geom., 38:2 (1997), 261–288 | MR | Zbl

[8] Molnár E., Szirmai J., “Symmetries in the 8 homogeneous 3-geometries”, Symmetry Cult. Sci., 21:1-3 (2010), 87–117 | Zbl

[9] Molnár E., Szirmai J., “Classification of $\mathbf{Sol}$ lattices”, Geom. Dedicata, 161:1 (2012), 251–275 | DOI | MR | Zbl

[10] Molnár E., Szirmai J., Vesnin A., “Projective metric realizations of cone-manifolds with singularities along 2-bridge knots and links”, J. Geom., 95 (2009), 91–133 | DOI | MR | Zbl

[11] Pallagi J., Schultz B., Szirmai J., “Visualization of geodesic curves, spheres and equidistant surfaces in $\mathbf{S}^2\times\mathbf{R}$ space”, KoG, 14 (2010), 35–40 | MR | Zbl

[12] Pallagi J., Schultz B., Szirmai J., “Equidistant surfaces in $\mathbf{H}^2\times\mathbf{R}$ space”, KoG, 15 (2011), 3–6 | MR | Zbl

[13] Scott P., “The geometries of 3-manifolds”, Bull. London Math. Soc., 15 (1983), 401–487 | DOI | MR | Zbl

[14] Szirmai J., “A candidate to the densest packing with equal balls in the Thurston geometries”, Beitr. Algebra Geom., 55:2 (2014), 441–452 | DOI | MR | Zbl

[15] Szirmai J., “Bisector surfaces and circumscribed spheres of tetrahedra derived by translation curves in $\mathbf{Sol}$ geometry”, New York J. Math., 25 (2019), 107–122 | MR | Zbl

[16] Szirmai J., “Simply transitive geodesic ball packings to $\mathbf{S^2\times R}$ space groups generated by glide reflections”, Ann. Mat. Pur. Appl., 193:4 (2014), 1201–1211 | DOI | MR | Zbl

[17] Szirmai J., “Geodesic ball packings in $\mathbf{S}^2\times\mathbf{R}$ space for generalized Coxeter space groups”, Beitr. Algebra Geom., 52 (2011), 413–430 | DOI | MR | Zbl

[18] Szirmai J., “Geodesic ball packings in $\mathbf{H}^2\times\mathbf{R}$ space for generalized Coxeter space groups”, Math. Commun., 17:1 (2012), 151–170 | MR | Zbl

[19] Szirmai J., “The densest translation ball packing by fundamental lattices in $\mathbf{Sol}$ space”, Beitr. Algebra Geom., 51:2 (2010), 353–373 | MR

[20] Szirmai J., “$\mathbf{Nil}$ geodesic triangles and their interior angle sums”, Bull. Braz. Math. Soc. (N.S.), 49 (2018), 761–773 | DOI | MR | Zbl

[21] Szirmai J., “Triangle angle sums related to translation curves in $\mathbf{Sol}$ geometry”, Stud. Univ. Babes-Bolyai Math., 2020 (to appear)

[22] Thurston W. P., Three-Dimensional Geometry and Topology, v. 1, ed. Levy S., Princeton University Press, Princeton–New Jersey, 1997 | MR | Zbl