Commutative weakly tripotent group rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2020), pp. 24-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

Very recently, Breaz and Cîmpean introduced and examined in Bull. Korean Math. Soc. (2018) the class of so-called weakly tripotent rings as those rings $R$ whose elements satisfy at leat one of the equations $x^3=x$ or $(1-x)^3=1-x$. These rings are generally non-commutative. We here obtain a criterion when the commutative group ring $RG$ is weakly tripotent in terms only of a ring $R$ and of a group $G$ plus their sections. Actually, we also show that these weakly tripotent rings are strongly invo-clean rings in the sense of Danchev in Commun. Korean Math. Soc. (2017). Thereby, our established criterion somewhat strengthens previous results on commutative strongly invo-clean group rings, proved by the present author in Univ. J. Math. Math. Sci. (2018). Moreover, this criterion helps us to construct a commutative strongly invo-clean ring of characteristic $2$ which is not weakly tripotent, thus showing that these two ring classes are different.
@article{BASM_2020_2_a2,
     author = {Peter V. Danchev},
     title = {Commutative weakly tripotent group rings},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {24--29},
     publisher = {mathdoc},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2020_2_a2/}
}
TY  - JOUR
AU  - Peter V. Danchev
TI  - Commutative weakly tripotent group rings
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2020
SP  - 24
EP  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2020_2_a2/
LA  - en
ID  - BASM_2020_2_a2
ER  - 
%0 Journal Article
%A Peter V. Danchev
%T Commutative weakly tripotent group rings
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2020
%P 24-29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2020_2_a2/
%G en
%F BASM_2020_2_a2
Peter V. Danchev. Commutative weakly tripotent group rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2020), pp. 24-29. http://geodesic.mathdoc.fr/item/BASM_2020_2_a2/

[1] Breaz S., Cîmpean A., “Weakly tripotent rings”, Bull. Korean Math. Soc., 55:4 (2018), 1179–1187 | MR | Zbl

[2] Danchev P. V., “Invo-clean unital rings”, Commun. Korean Math. Soc., 32 (2017), 19–27 | DOI | MR | Zbl

[3] Danchev P. V., “Commutative invo-clean group rings”, Univ. J. Math. Math. Sci., 11 (2018), 1–6 | MR | Zbl

[4] Danchev P. V., “Commutative nil-clean and $\pi$-regular group rings”, Uzbek Math. J., 2019, 33–39 | DOI | MR

[5] Danchev P. V., A characterization of weakly tripotent rings, Submitted | MR

[6] Danchev P. V., Lam T.-Y., “Rings with unipotent units”, Publ. Math. (Debrecen), 88 (2016), 449–466 | DOI | MR | Zbl

[7] Karpilovsky G., “The Jacobson radical of commutative group rings”, Arch. Math. (Basel), 39 (1982), 428–430 | DOI | MR | Zbl

[8] May W. L., “Group algebras over finitely generated rings”, J. Algebra, 39 (1976), 483–511 | DOI | MR | Zbl

[9] McGovern W. Wm., Raja S., Sharp A., “Commutative nil clean group rings”, J. Algebra Appl., 14 (2015) | DOI | MR | Zbl