Loops with invariant flexibility under the isostrophy
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2020), pp. 122-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

The question "Are the loops with universal (i.e. invariant under the isotopy of loops) flexibility law $xy\cdot x = x\cdot yx$, middle Bol loops?" is open in the theory of loops. If this conjecture is true then the loops for which all isostrophic loops are flexible are Moufang loops. In the present paper we prove that commutative loops with invariant flexibility under the isostrophy of loops are Moufang loops. In particular, we obtain that commutative $IP$-loops with universal flexibility are Moufang loops.
@article{BASM_2020_1_a7,
     author = {Parascovia Syrbu and Ion Grecu},
     title = {Loops with invariant flexibility under the isostrophy},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {122--128},
     publisher = {mathdoc},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2020_1_a7/}
}
TY  - JOUR
AU  - Parascovia Syrbu
AU  - Ion Grecu
TI  - Loops with invariant flexibility under the isostrophy
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2020
SP  - 122
EP  - 128
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2020_1_a7/
LA  - en
ID  - BASM_2020_1_a7
ER  - 
%0 Journal Article
%A Parascovia Syrbu
%A Ion Grecu
%T Loops with invariant flexibility under the isostrophy
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2020
%P 122-128
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2020_1_a7/
%G en
%F BASM_2020_1_a7
Parascovia Syrbu; Ion Grecu. Loops with invariant flexibility under the isostrophy. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2020), pp. 122-128. http://geodesic.mathdoc.fr/item/BASM_2020_1_a7/

[1] Albert A. A., “Quasigroups I, II”, Trans. Amer. Math. Soc., 54 (1943), 507–519 ; 55 (1944), 401–419 | DOI | MR | Zbl | DOI | MR | Zbl

[2] Artzy R., “Isotopy and parastrophy of quasigroups”, Proc. Amer. Math. Soc., 14 (1963), 429–431 | DOI | MR | Zbl

[3] Belousov V., Foundations of the theory of quasigroups and loops, Nauka, M., 1967 (in Russian) | MR

[4] Gwaramija A., “On a class of loops”, Uch. Zapiski MGPL, 375 (1971), 25–34 (in Russian) | MR

[5] Sade A., “Quasigroupes parastrophiques”, Math. Nachr., 20 (1959), 73–106 | DOI | MR | Zbl

[6] Shcherbacov V. A., Izbash V. I., “On quasigroups with Moufang identity”, Bul. Acad. Stiinte Repub. Moldova, Mat., 1998, no. 2(27), 109–116 | MR | Zbl

[7] Shelekhov A. M., “New closure conditions and some problems in loop theory”, Aequationes Math., 41:1 (1991), 79–84 | DOI | MR | Zbl

[8] Shelekhov A. M., “The isotopically invariant loop variety lying between Moufang loop variety and Bol loop variety”, Proc. of the 3rd Internat. Congress in Geometry (Thessaloniki, Greece, 1991), 1992, 376–384 | MR | Zbl

[9] Syrbu P., “Loops with universal elasticity”, Quasigroups and Related Systems, 1 (1994), 57–65 | MR | Zbl

[10] Syrbu P., “On loops with universal elasticity”, Quasigroups Related Systems, 3 (1996), 41–54 | MR | Zbl

[11] Syrbu P., “On middle Bol loops”, ROMAI J., 6:2 (2010), 229–236 | MR | Zbl

[12] Grecu I., Syrbu P., “On commutants of middle Bol loops”, Quasigroups and Related Systems, 22 (2014), 81–88 | MR | Zbl