Working with professor Nicolae Vulpe
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2019), pp. 154-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{BASM_2019_2_a9,
     author = {Dana Schlomiuk},
     title = {Working with professor {Nicolae} {Vulpe}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {154--160},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2019_2_a9/}
}
TY  - JOUR
AU  - Dana Schlomiuk
TI  - Working with professor Nicolae Vulpe
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2019
SP  - 154
EP  - 160
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2019_2_a9/
LA  - en
ID  - BASM_2019_2_a9
ER  - 
%0 Journal Article
%A Dana Schlomiuk
%T Working with professor Nicolae Vulpe
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2019
%P 154-160
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2019_2_a9/
%G en
%F BASM_2019_2_a9
Dana Schlomiuk. Working with professor Nicolae Vulpe. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2019), pp. 154-160. http://geodesic.mathdoc.fr/item/BASM_2019_2_a9/

[1] V. Arnold, Métodes mathématiques de la mécanique classique, Éditions MIR, M., 1976 | MR

[2] J. C. Artés, J. Llibre, N. I. Vulpe, “Quadratic systems with a rational first integral of degree 2: a complete classification in the coefficient space $\mathbb{R}^{12}$”, Rend. Circ. Mat. Palermo (2), 56 (2007), 417–444 | DOI | MR | Zbl

[3] J. C. Artés, J. Llibre, N. Vulpe, “Singular points of quadratic systems: a complete classification in the coefficient space $\mathbb{R}^{12}$”, International Journal of Bifurcation Theory and Chaos, 18:2 (2008), 313–362 | DOI | MR | Zbl

[4] J. C. Artés, J. Llibre, N. Vulpe, “Quadratic systems with a polynomial first integral: a complete classification in the coefficient space $\mathbb{R}^{12}$”, J. Differential Equations, 246 (2009), 3535–3558 | DOI | MR | Zbl

[5] J. C. Artés, J. Llibre, D. Schlomiuk, N. Vulpe, “Geometric configurations of singularities of planar polynomial differential systems”, A global classification in the quadratic case, Birkhauser, 2019 (to appear)

[6] C. Bujac, J. Llibre, N. Vulpe, “First integrals and phase portraits of planar polynomial differential cubic systems with the maximum number of invariant traight lines”, Qual. Theory Dyn. Syst., 15:2 (2016), 327–348 | DOI | MR | Zbl

[7] C. Bujac, D. Schlomiuk, N. Vulpe, Cubic differential systems with invariant straight lines of total multiplicity seven and four real distinct infinite singularities, 2019 (to appear) | MR

[8] G. Darboux, “Mémoire sur les équations différentielles du premier ordre et du premier degré”, Bulletin de Sciences Mathématiques, 2me série, 2:1 (1878), 60–96 ; 123–144 ; 151–200 | Zbl

[9] I. Nikolaev, N. Vulpe, “Topological classification of quadratic systems at infinity”, Journal of the London Mathematical Society, 55:2 (1997), 473–488 | DOI | MR | Zbl

[10] R.D.S. Oliveira, A.C. Rezende, N. Vulpe, “Family of quadratic differential systems with invariant hyperbolas: a complete classification in the space $\mathbb{R}^{12}$”, Electron. J. Differential Equations, 162 (2016), 1–50 | MR

[11] D. Schlomiuk, J. Pal, “On the Geometry in the Neighborhood of Infinity of Quadratic Differential Systems with a Weak Focus”, Qualitative Theory of Dynamical Systems, 2:1 (2001), 1–43 | DOI | MR | Zbl

[12] D. Schlomiuk, N. Vulpe, “Planar quadratic differential systems with invariant straight lines of at least five total multiplicity”, Qualitative Theory of Dynamical Systems, 5 (2004), 135–194 | DOI | MR | Zbl

[13] D. Schlomiuk, N. Vulpe, “Geometry of quadratic differential systems in the neighborhood of infinity”, J. Differential Equations, 215 (2005), 357–400 | DOI | MR | Zbl

[14] D. Schlomiuk, N. Vulpe, “Integrals and phase portraits of planar quadratic differential systems with invariant lines of at least five total multiplicity”, Rocky Mountain Journal of Mathematics, 38:6 (2008), 1–60 | DOI | MR

[15] D. Schlomiuk, N. Vulpe, “Planar quadratic differential systems with invariant straight lines of total multiplicity four”, Nonlinear Anal., 68:4 (2008), 681–715 | DOI | MR | Zbl

[16] D. Schlomiuk, N. Vulpe, “Integrals and phase portraits of planar quadratic differential systems with invariant lines of total multiplicity four”, Bul. Acad. Ştiinţe Repub. Mold., Mat., 2008, no. 1(56), 27–83 | MR | Zbl

[17] D. Schlomiuk, N. Vulpe, “The full study of planar quadratic differential systems possessing a line of singularities at infinity”, Journal of Dynamics and Diff. Equations, 20:4 (2008), 737–775 | DOI | MR | Zbl

[18] D. Schlomiuk, N. Vulpe, “Global classification of the planar Lotka–Volterra differential systems according to their configurations of invariant straight lines”, Journal of Fixed Point Theory and Applications, 8:1 (2010), 177–245 | DOI | MR | Zbl

[19] D. Schlomiuk, N. Vulpe, “Global topological classification of Lotka–Volterra quadratic differential systems”, Electron. J. Differential Equations, 2012, 64, 69 pp. | MR | Zbl

[20] J. Llibre, N. Vulpe, “Planar cubic polynomial differential systems with the maximum number of invariant straight lines”, Rocky Mountain J. Math., 36:4 (2006), 1301–1373 | DOI | MR | Zbl

[21] N. Vulpe, “Characterization of the finite weak singularities of quadratic systems via invariant theory”, Nonlinear Anal., 74:17 (2011), 6553–6582 | DOI | MR | Zbl