Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2019_2_a9, author = {Dana Schlomiuk}, title = {Working with professor {Nicolae} {Vulpe}}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {154--160}, publisher = {mathdoc}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2019_2_a9/} }
Dana Schlomiuk. Working with professor Nicolae Vulpe. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2019), pp. 154-160. http://geodesic.mathdoc.fr/item/BASM_2019_2_a9/
[1] V. Arnold, Métodes mathématiques de la mécanique classique, Éditions MIR, M., 1976 | MR
[2] J. C. Artés, J. Llibre, N. I. Vulpe, “Quadratic systems with a rational first integral of degree 2: a complete classification in the coefficient space $\mathbb{R}^{12}$”, Rend. Circ. Mat. Palermo (2), 56 (2007), 417–444 | DOI | MR | Zbl
[3] J. C. Artés, J. Llibre, N. Vulpe, “Singular points of quadratic systems: a complete classification in the coefficient space $\mathbb{R}^{12}$”, International Journal of Bifurcation Theory and Chaos, 18:2 (2008), 313–362 | DOI | MR | Zbl
[4] J. C. Artés, J. Llibre, N. Vulpe, “Quadratic systems with a polynomial first integral: a complete classification in the coefficient space $\mathbb{R}^{12}$”, J. Differential Equations, 246 (2009), 3535–3558 | DOI | MR | Zbl
[5] J. C. Artés, J. Llibre, D. Schlomiuk, N. Vulpe, “Geometric configurations of singularities of planar polynomial differential systems”, A global classification in the quadratic case, Birkhauser, 2019 (to appear)
[6] C. Bujac, J. Llibre, N. Vulpe, “First integrals and phase portraits of planar polynomial differential cubic systems with the maximum number of invariant traight lines”, Qual. Theory Dyn. Syst., 15:2 (2016), 327–348 | DOI | MR | Zbl
[7] C. Bujac, D. Schlomiuk, N. Vulpe, Cubic differential systems with invariant straight lines of total multiplicity seven and four real distinct infinite singularities, 2019 (to appear) | MR
[8] G. Darboux, “Mémoire sur les équations différentielles du premier ordre et du premier degré”, Bulletin de Sciences Mathématiques, 2me série, 2:1 (1878), 60–96 ; 123–144 ; 151–200 | Zbl
[9] I. Nikolaev, N. Vulpe, “Topological classification of quadratic systems at infinity”, Journal of the London Mathematical Society, 55:2 (1997), 473–488 | DOI | MR | Zbl
[10] R.D.S. Oliveira, A.C. Rezende, N. Vulpe, “Family of quadratic differential systems with invariant hyperbolas: a complete classification in the space $\mathbb{R}^{12}$”, Electron. J. Differential Equations, 162 (2016), 1–50 | MR
[11] D. Schlomiuk, J. Pal, “On the Geometry in the Neighborhood of Infinity of Quadratic Differential Systems with a Weak Focus”, Qualitative Theory of Dynamical Systems, 2:1 (2001), 1–43 | DOI | MR | Zbl
[12] D. Schlomiuk, N. Vulpe, “Planar quadratic differential systems with invariant straight lines of at least five total multiplicity”, Qualitative Theory of Dynamical Systems, 5 (2004), 135–194 | DOI | MR | Zbl
[13] D. Schlomiuk, N. Vulpe, “Geometry of quadratic differential systems in the neighborhood of infinity”, J. Differential Equations, 215 (2005), 357–400 | DOI | MR | Zbl
[14] D. Schlomiuk, N. Vulpe, “Integrals and phase portraits of planar quadratic differential systems with invariant lines of at least five total multiplicity”, Rocky Mountain Journal of Mathematics, 38:6 (2008), 1–60 | DOI | MR
[15] D. Schlomiuk, N. Vulpe, “Planar quadratic differential systems with invariant straight lines of total multiplicity four”, Nonlinear Anal., 68:4 (2008), 681–715 | DOI | MR | Zbl
[16] D. Schlomiuk, N. Vulpe, “Integrals and phase portraits of planar quadratic differential systems with invariant lines of total multiplicity four”, Bul. Acad. Ştiinţe Repub. Mold., Mat., 2008, no. 1(56), 27–83 | MR | Zbl
[17] D. Schlomiuk, N. Vulpe, “The full study of planar quadratic differential systems possessing a line of singularities at infinity”, Journal of Dynamics and Diff. Equations, 20:4 (2008), 737–775 | DOI | MR | Zbl
[18] D. Schlomiuk, N. Vulpe, “Global classification of the planar Lotka–Volterra differential systems according to their configurations of invariant straight lines”, Journal of Fixed Point Theory and Applications, 8:1 (2010), 177–245 | DOI | MR | Zbl
[19] D. Schlomiuk, N. Vulpe, “Global topological classification of Lotka–Volterra quadratic differential systems”, Electron. J. Differential Equations, 2012, 64, 69 pp. | MR | Zbl
[20] J. Llibre, N. Vulpe, “Planar cubic polynomial differential systems with the maximum number of invariant straight lines”, Rocky Mountain J. Math., 36:4 (2006), 1301–1373 | DOI | MR | Zbl
[21] N. Vulpe, “Characterization of the finite weak singularities of quadratic systems via invariant theory”, Nonlinear Anal., 74:17 (2011), 6553–6582 | DOI | MR | Zbl