Invariant conditions of stability of unperturbed motion governed by critical differential systems $s(1,2,3)$
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2019), pp. 137-153

Voir la notice de l'article provenant de la source Math-Net.Ru

The center-affine invariant conditions of stability of unperturbed motion governed by critical differential systems $s(1,2,3)$ were obtained.
@article{BASM_2019_2_a8,
     author = {Natalia Neagu and Victor Orlov and Mihail Popa},
     title = {Invariant conditions of stability of unperturbed motion governed by critical differential systems $s(1,2,3)$},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {137--153},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2019_2_a8/}
}
TY  - JOUR
AU  - Natalia Neagu
AU  - Victor Orlov
AU  - Mihail Popa
TI  - Invariant conditions of stability of unperturbed motion governed by critical differential systems $s(1,2,3)$
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2019
SP  - 137
EP  - 153
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2019_2_a8/
LA  - en
ID  - BASM_2019_2_a8
ER  - 
%0 Journal Article
%A Natalia Neagu
%A Victor Orlov
%A Mihail Popa
%T Invariant conditions of stability of unperturbed motion governed by critical differential systems $s(1,2,3)$
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2019
%P 137-153
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2019_2_a8/
%G en
%F BASM_2019_2_a8
Natalia Neagu; Victor Orlov; Mihail Popa. Invariant conditions of stability of unperturbed motion governed by critical differential systems $s(1,2,3)$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2019), pp. 137-153. http://geodesic.mathdoc.fr/item/BASM_2019_2_a8/