The classification of a family of cubic differential systems in terms of configurations of invariant lines of the type $(3,3)$
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2019), pp. 79-98

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we consider the class of non-degenerate real planar cubic vector fields, which possess two real and two complex distinct infinite singularities and invariant straight lines, including the line at infinity, of total multiplicity $7$. In addition, the systems from this class possess configurations of the type $(3,3)$. We prove that there are exactly $16$ distinct configurations of invariant straight lines for this class and present corresponding examples for the realization of each one of the detected configurations.
@article{BASM_2019_2_a4,
     author = {Cristina Bujac},
     title = {The classification of a family of cubic differential systems in terms of configurations of invariant lines of the type $(3,3)$},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {79--98},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2019_2_a4/}
}
TY  - JOUR
AU  - Cristina Bujac
TI  - The classification of a family of cubic differential systems in terms of configurations of invariant lines of the type $(3,3)$
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2019
SP  - 79
EP  - 98
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2019_2_a4/
LA  - en
ID  - BASM_2019_2_a4
ER  - 
%0 Journal Article
%A Cristina Bujac
%T The classification of a family of cubic differential systems in terms of configurations of invariant lines of the type $(3,3)$
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2019
%P 79-98
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2019_2_a4/
%G en
%F BASM_2019_2_a4
Cristina Bujac. The classification of a family of cubic differential systems in terms of configurations of invariant lines of the type $(3,3)$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2019), pp. 79-98. http://geodesic.mathdoc.fr/item/BASM_2019_2_a4/