Limit cycles in continuous and discontinuous piecewise linear differential systems with two pieces separated by a straight line
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2019), pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a survey on the study of the maximum number of limit cycles of planar continuous and discontinuous piecewise linear differential systems defined in two half–planes separated by a straight line $L$. We restrict our attention to the crossing limit cycles, i.e. to the limit cycles having exactly two points on the straight line $L$. We summarize the results known by now and describe the tools for obtaining them.
@article{BASM_2019_2_a0,
     author = {Jaume Llibre},
     title = {Limit cycles in continuous and discontinuous piecewise linear differential systems with two pieces separated by a straight line},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--12},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2019_2_a0/}
}
TY  - JOUR
AU  - Jaume Llibre
TI  - Limit cycles in continuous and discontinuous piecewise linear differential systems with two pieces separated by a straight line
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2019
SP  - 3
EP  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2019_2_a0/
LA  - en
ID  - BASM_2019_2_a0
ER  - 
%0 Journal Article
%A Jaume Llibre
%T Limit cycles in continuous and discontinuous piecewise linear differential systems with two pieces separated by a straight line
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2019
%P 3-12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2019_2_a0/
%G en
%F BASM_2019_2_a0
Jaume Llibre. Limit cycles in continuous and discontinuous piecewise linear differential systems with two pieces separated by a straight line. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2019), pp. 3-12. http://geodesic.mathdoc.fr/item/BASM_2019_2_a0/

[1] A. Andronov, A. Vitt, S. Khaikin, Theory of Oscillations, Pergamon Press, Oxford, 1966 (Russian edition $\approx$ 1930) | MR

[2] J. C. Artés, J. Llibre, J. C. Medrado, M. A. Teixeira, “Piecewise linear differential systems with two real saddles”, Math. Comput. Simul., 95 (2013), 13–22 | MR

[3] M. di Bernardo, C. J. Budd, A. R. Champneys, P. Kowalczyk, Piecewise-Smooth Dynamical Systems: Theory and Applications, Appl. Math. Sci., 163, Springer-Verlag, London, 2008 | MR | Zbl

[4] D. C. Braga, L. F. Mello, “Limit cycles in a family of discontinuous piecewise linear differential systems with two zones in the plane”, Nonlinear Dynam., 73 (2013), 1283–1288 | DOI | MR | Zbl

[5] C. Buzzi, C. Pessoa, J. Torregrosa, “Piecewise linear perturbations of a linear center”, Discrete Contin. Dyn. Syst., 33 (2013), 3915–3936 | DOI | MR | Zbl

[6] V. Carmona, F. Fernández-Sánchez, D. D. Novaes, The Lum–Chua conjecture revisited, preprint, 2019

[7] J. Castillo, J. Llibre, F. Verduzco, “The pseudo–Hopf bifurcation for planar discontinuous piecewise linear differential systems”, Nonlinear Dynam., 90 (2017), 1829–1840 | DOI | MR | Zbl

[8] R. D. Euzébio, J. Llibre, “On the number of limit cycles in discontinuous piecewise linear differential systems with two pieces separated by a straight line”, J. Math. Anal. Appl., 424 (2015), 475–486 | DOI | MR | Zbl

[9] A. F. Filippov, Differential equations with discontinuous right–hand sides, translated from Russian, Mathematics and its Applications (Soviet Series), 18, Kluwer Academic Publishers Group, Dordrecht, 1988 | DOI | MR | Zbl

[10] E. Freire, E. Ponce, F. Rodrigo, F. Torres, “Bifurcation sets of continuous piecewise linear systems with two zones”, Int. J. Bifurcation and Chaos, 8 (1998), 2073–2097 | DOI | MR | Zbl

[11] E. Freire, E. Ponce, F. Torres, “Canonical discontinuous planar piecewise linear systems”, SIAM J. Applied Dynamical Systems, 11 (2012), 181–211 | DOI | MR | Zbl

[12] E. Freire, E. Ponce, F. Torres, “A general mechanism to generate three limit cycles in planar Filippov systems with two zones”, Nonlinear Dynamics, 78 (2014), 251–263 | DOI | MR | Zbl

[13] F. Giannakopoulos, K. Pliete, “Planar systems of piecewise linear differential equations with a line of discontinuity”, Nonlinearity, 14 (2001), 1611–1632 | DOI | MR | Zbl

[14] M. R. A. Gouveia, J. Llibre, D. D. Novaes, “On limit cycles bifurcating from the infinity in discontinuous piecewise linear differential systems”, Appl. Math. Comput., 271 (2015), 365–374 | MR | Zbl

[15] M. Han, V. G. Romanovski, X. Zhang, “Equivalence of the Melnikov function method and the averaging method”, Qual. Theory Dynam. Sys., 15 (2016), 471–479 | DOI | MR | Zbl

[16] M. Han, W. Zhang, “On Hopf bifurcation in non–smooth planar systems”, J. of Differential Equations, 248 (2010), 2399–2416 | DOI | MR | Zbl

[17] S. M. Huan, X. S. Yang, “On the number of limit cycles in general planar piecewise systems”, Discrete Cont. Dyn. Syst., Series A, 32 (2012), 2147–2164 | DOI | MR | Zbl

[18] S. M. Huan, X. S. Yang, “Existence of limit cycles in general planar piecewise linear systems of saddle–saddle dynamics”, Nonlinear Anal., 92 (2013), 82–95 | DOI | MR | Zbl

[19] S. M. Huan, X. S. Yang, “On the number of limit cycles in general planar piecewise linear systems of node–node types”, J. Math. Anal. Appl., 411 (2014), 340–353 | DOI | MR | Zbl

[20] E. Isaacson, H. B. Keller, Analysis of numerical methods, John Wiley and Sons, New York, 1966 | MR | Zbl

[21] L. Li, “Three crossing limit cycles in planar piecewise linear systems with saddle-focus type”, Electron. J. Qual. Theory Differ. Equ., 2014, 70, 14 pp. | MR

[22] S. Li, J. Llibre, “Phase portraits of piecewise linear continuous differential systems with two zones separated by a straight line”, J. Differential Equations, 266 (2019), 8094–8109 | DOI | MR | Zbl

[23] J. Llibre, D. D. Novaes, M. A. Teixeira, “Limit cycles bifurcating from the periodic orbits of a discontinuous piecewise linear differential center with two zones”, Int. J. Bifurcation and Chaos, 25 (2015), 1550144, 11 pp. | DOI | MR | Zbl

[24] J. Llibre, D. D. Novaes, M. A. Teixeira, “Maximum number of limit cycles for certain piecewise linear dynamical systems”, Nonlinear Dyn., 82 (2015), 1159–1175 | DOI | MR | Zbl

[25] J. Llibre, D. D. Novaes, M. A. Teixeira, “On the birth of limit cycles for non–smooth dynamical systems”, Bull. Sci. Math., 139 (2015), 229–244 | DOI | MR | Zbl

[26] J. Llibre, M. Ordóñez, E. Ponce, “On the existence and uniqueness of limit cycles in planar piecewise linear systems without symmetry”, Nonlinear Anal. Series B: Real World Appl., 14 (2013), 2002–2012 | DOI | MR | Zbl

[27] J. Llibre, E. Ponce, “Three nested limit cycles in discontinuous piecewise linear differential systems with two zones”, Dyn. Cont. Disc. Impul. Syst., Series B, 19 (2012), 325–335 | MR | Zbl

[28] J. Llibre, M. A. Teixeira, “Piecewise linear differential systems without equilibria produce limit cycles”, Nonlinear Dyn., 88 (2017), 157–164 | DOI | MR | Zbl

[29] J. Llibre, M. A. Teixeira, “Periodic orbits of continuous and discontinuous piecewise linear differential systems via first integrals”, São Paulo J. Math. Sci., 12 (2018), 121–135 | DOI | MR | Zbl

[30] J. Llibre, M. A. Teixeira, J. Torregrosa, “Lower bounds for the maximum number of limit cycles of discontinuous piecewise linear differential systems with a straight line of separation”, Int. J. Bifurcation and Chaos, 23 (2013), 1350066, 10 pp. | DOI | MR | Zbl

[31] J. Llibre, X. Zhang, “Limit cycles for discontinuous planar piecewise linear differential systems separated by one straight line and having a center”, J. Math. Anal. Appl., 467 (2018), 537–549 | DOI | MR | Zbl

[32] N. G. Lloyd, Degree theory, Cambridge Tracts in Mathematics, 73, Cambridge University Press, Cambridge–New York–Melbourne, 1978 | MR | Zbl

[33] R. Lum, L. O. Chua, “Global properties of continuous piec ewise-linear vector fields. Part I: Simplest case in $\mathrm{R}^2$”, Internat. J. Circuit Theory Appl., 19 (1991), 251–307 | DOI | Zbl

[34] R. Lum, L. O. Chua, “Global properties of continuous piecewise-linear vector fields. Part II: Simplest symmetric case in $\mathrm{R}^2$”, Internat. J. Circuit Theory Appl., 20 (1992), 9–46 | DOI | Zbl

[35] O. Makarenkov, J. S. W. Lamb, “Dynamics and bifurcations of nonsmooth systems: a survey”, Phys. D, 241 (2012), 1826–1844 | DOI | MR

[36] S. Shui, X. Zhang, J. Li, “The qualitative analysis of a class of planar Filippov systems”, Nonlinear Anal., 73 (2010), 1277–1288 | DOI | MR | Zbl

[37] D. J. W. Simpson, Bifurcations in Piecewise-Smooth Continuous Systems, World Sci. Ser. Nonlinear Sci. Ser. A, 69, World Scientific, Singapore, 2010 | MR