$n$-Torsion regular rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 20-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

As proper subclasses of the classes of unit-regular and strongly regular rings, respectively, the two new classes of $n$-torsion regular rings and strongly $n$-torsion regular rings are introduced and investigated for any natural number $n$. Their complete isomorphism classification is given as well. More concretely, although it has been recently shown by Nielsen–Šter (TAMS, 2018) that unit-regular rings need not be strongly clean, the rather curious fact that, for each positive odd integer $n$, the $n$-torsion regular rings are always strongly clean is proved.
@article{BASM_2019_1_a1,
     author = {Peter V. Danchev},
     title = {$n${-Torsion} regular rings},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {20--29},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2019_1_a1/}
}
TY  - JOUR
AU  - Peter V. Danchev
TI  - $n$-Torsion regular rings
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2019
SP  - 20
EP  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2019_1_a1/
LA  - en
ID  - BASM_2019_1_a1
ER  - 
%0 Journal Article
%A Peter V. Danchev
%T $n$-Torsion regular rings
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2019
%P 20-29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2019_1_a1/
%G en
%F BASM_2019_1_a1
Peter V. Danchev. $n$-Torsion regular rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 20-29. http://geodesic.mathdoc.fr/item/BASM_2019_1_a1/

[1] S. S. Breaz, P. V. Danchev, Y. Zhou, “Rings in which every element is either a sum or a difference of a nilpotent and an idempotent”, J. Algebra Appl. (8), 15 (2016) | MR | Zbl

[2] V. P. Camillo, D. Khurana, “A characterization of unit regular rings”, Commun. Algebra, 29 (2001), 2293–2295 | DOI | MR | Zbl

[3] P. V. Danchev, “A new characterization of boolean rings with identity”, Irish Math. Soc. Bull., 76 (2015), 55–60 | MR | Zbl

[4] P. V. Danchev, “Weakly UU rings”, Tsukuba J. Math., 40 (2016), 101–118 | DOI | MR | Zbl

[5] P. V. Danchev, “Invo-clean unital rings”, Commun. Korean Math. Soc., 32 (2017), 19–27 | DOI | MR | Zbl

[6] P. V. Danchev, “On exchange $\pi$-UU unital rings”, Toyama Math. J., 39 (2017), 1–7 | MR | Zbl

[7] P. V. Danchev, “Weakly invo-clean unital rings”, Afr. Mat., 28 (2017), 1285–1295 | DOI | MR | Zbl

[8] P. V. Danchev, “Uniqueness in von Neumann regular rings”, Palestine J. Math., 7 (2018), 60–63 | MR | Zbl

[9] P. V. Danchev, “Invo-regular unital rings”, Ann. Univ. Mariae Curie-Sklodowska, Math., 72 (2018), 45–53 | MR | Zbl

[10] P. V. Danchev, “A characterization of weakly J$(n)$-rings”, J. Math. Appl., 41 (2018), 53–61 | MR

[11] P. V. Danchev, “Weakly clean and exchange UNI rings”, Ukrain. Math. J., 71 (2019)

[12] P. V. Danchev, T. Y. Lam, “Rings with unipotent units”, Publ. Math. Debrecen, 88 (2016), 449–466 | DOI | MR | Zbl

[13] P. Danchev, J. Matczuk, “$n$-Torsion clean rings”, Contemp. Math., 727 (2019), 71–82 | DOI | MR

[14] P. V. Danchev, W. Wm. McGovern, “Commutative weakly nil clean unital rings”, J. Algebra (5), 425 (2015), 410–422 | DOI | MR | Zbl

[15] A. J. Diesl, “Nil clean rings”, J. Algebra, 383 (2013), 197–211 | DOI | MR | Zbl

[16] G. Ehrlich, “Unit-regular rings”, Portugal. Math., 27 (1968), 209–212 | MR | Zbl

[17] M. Ferrero, E. Puczylowski, S. Sidki, “On the representation of an idempotent as a sum of nilpotent elements”, Canad. Math. Bull., 39 (1996), 178–185 | DOI | MR | Zbl

[18] K. R. Goodearl, Von Neumann Regular Rings, second edition, Robert E. Krieger Publishing Co., Inc., Malabar, FL, 1991 | MR

[19] Y. Hirano, H. Tominaga, A. Yaqub, “On rings in which every element is uniquely expressible as a sum of a nilpotent element and a certain potent element”, Math. J. Okayama Univ. (1), 30 (1988), 33–40 | MR | Zbl

[20] T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Math., 131, Second Edition, Springer-Verlag, Berlin–Heidelberg–New York, 2001 | DOI | MR | Zbl

[21] W. K. Nicholson, “Lifting idempotents and exchange rings”, Trans. Amer. Math. Soc., 229 (1977), 269–278 | DOI | MR | Zbl

[22] W. K. Nicholson, “Strongly clean rings and Fitting's lemma”, Commun. Algebra, 27 (1999), 3583–3592 | DOI | MR | Zbl

[23] P. P. Nielsen, J. Šter, “Connections between unit-regularity, regularity, cleanness and strong cleanness of elements and rings”, Trans. Amer. Math. Soc., 370 (2018), 1759–1782 | DOI | MR | Zbl

[24] V. Perić, “On rings with polynomial identity $x^n-x=0$”, Publ. Inst. Math. (Beograd) (N.S.), 34(48) (1983), 165–168 | MR

[25] A. A. Tuganbaev, Rings Close to Regular, Mathematics and its Applications, 545, Kluwer Academic Publishers, Dordrecht, 2002 | MR | Zbl