$n$-Torsion regular rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 20-29

Voir la notice de l'article provenant de la source Math-Net.Ru

As proper subclasses of the classes of unit-regular and strongly regular rings, respectively, the two new classes of $n$-torsion regular rings and strongly $n$-torsion regular rings are introduced and investigated for any natural number $n$. Their complete isomorphism classification is given as well. More concretely, although it has been recently shown by Nielsen–Šter (TAMS, 2018) that unit-regular rings need not be strongly clean, the rather curious fact that, for each positive odd integer $n$, the $n$-torsion regular rings are always strongly clean is proved.
@article{BASM_2019_1_a1,
     author = {Peter V. Danchev},
     title = {$n${-Torsion} regular rings},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {20--29},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2019_1_a1/}
}
TY  - JOUR
AU  - Peter V. Danchev
TI  - $n$-Torsion regular rings
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2019
SP  - 20
EP  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2019_1_a1/
LA  - en
ID  - BASM_2019_1_a1
ER  - 
%0 Journal Article
%A Peter V. Danchev
%T $n$-Torsion regular rings
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2019
%P 20-29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2019_1_a1/
%G en
%F BASM_2019_1_a1
Peter V. Danchev. $n$-Torsion regular rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 20-29. http://geodesic.mathdoc.fr/item/BASM_2019_1_a1/