Regularized gradient-projection algorithm for solving one-parameter nonexpansive semigroup, constrained convex minimization and generalized equilibrium problems
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2018), pp. 32-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

Our purpose in this paper is to propose an iterative algorithm for finding a common element of the fixed points set of common solutions of a one-parameter nonexpansive semigroup, the set of solutions of constrained convex minimization problem and the set of solutions of generalized equilibrium problem in a real Hilbert space using the idea of regularized gradient-projection algorithm under suitable conditions. Finally, we give an application.
@article{BASM_2018_3_a3,
     author = {C. C. Okeke and O. T. Mewomo},
     title = {Regularized gradient-projection algorithm for solving one-parameter nonexpansive semigroup, constrained convex minimization and generalized equilibrium problems},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {32--56},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2018_3_a3/}
}
TY  - JOUR
AU  - C. C. Okeke
AU  - O. T. Mewomo
TI  - Regularized gradient-projection algorithm for solving one-parameter nonexpansive semigroup, constrained convex minimization and generalized equilibrium problems
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2018
SP  - 32
EP  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2018_3_a3/
LA  - en
ID  - BASM_2018_3_a3
ER  - 
%0 Journal Article
%A C. C. Okeke
%A O. T. Mewomo
%T Regularized gradient-projection algorithm for solving one-parameter nonexpansive semigroup, constrained convex minimization and generalized equilibrium problems
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2018
%P 32-56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2018_3_a3/
%G en
%F BASM_2018_3_a3
C. C. Okeke; O. T. Mewomo. Regularized gradient-projection algorithm for solving one-parameter nonexpansive semigroup, constrained convex minimization and generalized equilibrium problems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2018), pp. 32-56. http://geodesic.mathdoc.fr/item/BASM_2018_3_a3/

[1] Ali B., “Fixed points approximation and solutions of some equilibrium and variational inequality problems”, Int. J. Math. Sci., 13 (2009), 656534 | MR

[2] Blum E., Oettli W., “From optimization and variational inequalities to equilibrium problems”, Math. Student, 63 (1994), 123–145 | MR | Zbl

[3] Brezis H., Operator maximaux monotones, Mathematics Studies, 5, North-Holland, Amsterdam, 1973 | MR

[4] Ceng L. C., Ansari Q. H., Yao J. C., “Some iterative methods for finding fixed point and for solving constrained convex minimization problems”, Nonlinear Anal., 74 (2011), 5286–5302 | DOI | MR | Zbl

[5] Chang S. S., Lee H. W., Kim J. K., “A new method for solving equilibrium problem, fixed point problem and variational inequality problem with application to optimization”, Nonlinear Anal., 70 (2009), 3307–3319 | DOI | MR | Zbl

[6] Cho Y. J., Qin X., Kang J. I., “Convergence theorems based on hybrid methods for generalized equilibrium and fixed point problems”, Nonlinear Anal., 71 (2009), 4203–4214 | DOI | MR | Zbl

[7] Cianciaruso F., Marino G., Muglia L., “Iterative methods for equilibrium and fixed point problem for nonexpansive semigroup in Hilbert spaces”, J. Optim. Theory Appl., 146 (2010), 491–509 | DOI | MR | Zbl

[8] He H. M., Liu S. Y., Cho Y., “An explicit method for systems of equilibrium problems and fixed points of infinite family of nonexpansive mappings”, J. Comput. Appl. Math., 235 (2011), 4128–4139 | DOI | MR | Zbl

[9] Hundal H., “An alternative projection that does not converge in norm”, Nonlinear Anal., 57 (2004), 35–61 | DOI | MR | Zbl

[10] Li S., Li L., Su Y., “General iterative methods for a one-parameter nonexpansive semigroup in Hilbert space”, Nonlinear Anal., 70 (2009), 3065–3071 | DOI | MR | Zbl

[11] Math J., Tian M., Liu L., “General iterative methods for equilibrium and constrained convex minimization problem”, Optim. Program. Oper. Res., 63 (2014), 1367–1385 | MR

[12] Maoudafi A., Thera M., “Proximal and dynamical approaches to equilibrium problems”, Lecture Notes in Economics and Mathematical systems, 477, Springer, 1999, 187–201 | DOI | MR

[13] Marino G., Xu H. K., “A general method for noexpansive mappings in Hilbert space”, J. Math. Anal. Appl., 318 (2006), 43–52 | DOI | MR | Zbl

[14] Okeke C. C., Mewomo O. T., “On split equilibrim problem, variational inequality problem and fixed point problem for multi-valued mappings”, Ann. Acad. Rom. Sci. Ser. Math. Appl., 9:2 (2017), 255–280 | MR

[15] Okeke C. C, Bello A. U., Izuchukwu C., Mewomo O. T., “Split equality for monotone inclusion problem and fixed point problem in real Banach spaces”, Aust. J. Math. Anal. Appl., 14:2 (2017), 1–20 | MR

[16] Okeke C. C., Okpala M. E., Mewomo O. T., “Common Solution of generalized mixed equilibrium problem and Bregman strongly nonexpansive mapping in reflexive Banach spaces”, Advances in Nonlinear variational Inequality, 21:1 (2018), 1–16 | MR

[17] Combettes P. L., Hirstoage S. A., “Equilibrium programming in Hilbert spaces”, J. Nonlinear Anal., 6 (2002), 1–17 | MR

[18] Shehu Y., “An iterative method for nonexpansive semigroup variational inclusions and generalized mixed equilibrium problems”, Mathematical and Computer Modelling, 55 (2012), 1301–1314 | DOI | MR | Zbl

[19] Shehu Y., Mewomo O. T., “Further investigation into split common fixed point problem for demicontractive operators”, Acta Math. Sin. (Engl. Ser.), 32:11 (2016), 1357–1376 | DOI | MR | Zbl

[20] Shimizu T., Takahashi W., “Strong convergence of common fixed points of families of nonexpansive mappings”, J. Math. Anal. Appl., 211 (1997), 71–83 | DOI | MR | Zbl

[21] Takashi S., Takahashi W., “Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces”, J. Math. Anal. Appl., 331 (2007), 506–515 | DOI | MR

[22] Tian M., Jiao S-W., “A general regularized gradient-projection method for solving equilibrium and constrained convex minimization problems”, Optimization, 65:11 (2016), 2007–2024 | DOI | MR | Zbl

[23] Tian M., “A general iterative algorithm for nonexpansive mappings in Hilbert spaces”, Nonlinear Anal., 73 (2010), 689–694 | DOI | MR | Zbl

[24] Xu H. K., “Averaged mappings and the gradient-projection algorithm”, J. Optim. Theory Appl., 50 (2011), 360–378 | MR

[25] Xu H. K., “Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces”, Inverse Prob., 26 (2010), 10518 \smallskip | MR

[26] Yamada I., “The hybrid steepest descent method for the variational inequality problems over the intersection of fixed point sets of nonexpansive mappings”, Inherently parallel algorithms in feasibility and optimization and their applications, Studies in Computational Mathematics, 8, eds. Butnariu D., Censor Y., Riech S., North-Holland, Amsterdam, 2001, 473–504 | DOI | MR | Zbl