Properties of annihilator graph of a commutative semigroup
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2018), pp. 22-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S$ be a commutative semigroup with zero. Let $Z(S)$ be the set of all zero-divisors of $S$. We define the annihilator graph of $S$, denoted by $ANN_{G}(S)$, as the undirected graph whose set of vertices is $Z(S)^{\ast}=Z(S)-\{0\}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $ann_{S}(xy)\neq ann_{S}(x)\cap ann_{S}(y)$. In this paper, we study some basic properties of $ANN_{G}(S)$ by means of $\Gamma(S)$. We also show that if $Z(S)\neq S$, then $ANN_{G}(S)$ is a subgraph of $\Gamma(S)$. Moreover, we investigate some properties of the annihilator graph $ANN_{G}(S)$ related to minimal prime ideals of $S$. We also study some connections between the domination numbers of annihilator graphs and zero-divisor graphs.
@article{BASM_2018_3_a2,
     author = {Yahya Talebi and Sahar Akbarzadeh},
     title = {Properties of annihilator graph of a commutative semigroup},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {22--31},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2018_3_a2/}
}
TY  - JOUR
AU  - Yahya Talebi
AU  - Sahar Akbarzadeh
TI  - Properties of annihilator graph of a commutative semigroup
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2018
SP  - 22
EP  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2018_3_a2/
LA  - en
ID  - BASM_2018_3_a2
ER  - 
%0 Journal Article
%A Yahya Talebi
%A Sahar Akbarzadeh
%T Properties of annihilator graph of a commutative semigroup
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2018
%P 22-31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2018_3_a2/
%G en
%F BASM_2018_3_a2
Yahya Talebi; Sahar Akbarzadeh. Properties of annihilator graph of a commutative semigroup. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2018), pp. 22-31. http://geodesic.mathdoc.fr/item/BASM_2018_3_a2/

[1] Anderson D. F., Livingston P. S., “The zero-divisor graph of a commutative ring”, J. Algebra, 217 (1999), 434–447 | DOI | MR | Zbl

[2] Badawi A., “On the annihilator graph of a commutative ring”, Comm. Algebra, 42 (2014), 1–14 | DOI | MR

[3] Baruah P. P., Patra K., “Some properties of annihilator graph of a commutative ring”, IOSR-JM, 10 (2014), 61–68 | DOI

[4] Beck I., “Coloring of commutative rings”, J. Algebra, 116 (1988), 208–226 | DOI | MR | Zbl

[5] Bondy J. A., Murty U. S. R., Graph Theory with Applications, American Elsevier, New York, 1976 | MR | Zbl

[6] Clifford A. H., Preston G. B., The algebric theory of semigroups, Mathematical Surveys, 2, no. 7, American Mathematical Society, Providence, RI, 1967 | MR

[7] DeMeyer L., Dsa M., Epstein I., Geiser A., Smith K., “Semigroups and the zero divisor graph”, Bull. Inst. Combin. Appl., 57 (2009), 60–70 | MR | Zbl

[8] DeMeyer F. R., Demeyer L., “Zero-divisor graphs of semigroups”, J. Algebra, 283 (2005), 190–198 | DOI | MR | Zbl

[9] Kashayarmanesh K., Afkhami M., Sakhdari M., “The annihilator graph of a commutative semigroup”, Algebra and Its Applications, 14 (2015), 1–14 | MR

[10] Lukas T. G., “The diameter of a zero-divisor graph”, J. Algebra, 301 (2006), 174–193 | DOI | MR

[11] Mojdeh D. A., Rahimi A. M., “Dominating sets of some graphs associated to commutative rings”, Comm. Algebra, 40 (2012), 3389–3396 | DOI | MR | Zbl