Some estimates for angular derivative at the boundary
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2017), pp. 120-134

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we establish lower estimates for the modulus of the values of $f(z)$ on boundary of unit disc. For the function $f(z)=1+c_1z+c_2z^2+\dots$ defined in the unit disc such that $f(z)\in\mathcal N(\beta)$ assuming the existence of angular limit at the boundary point $b$, the estimations below of the modulus of angular derivative have been obtained at the boundary point $b$ with $f(b)=\beta$. Moreover, Schwarz lemma for class $\mathcal N(\beta)$ is given. The sharpness of these inequalities has been proved.
@article{BASM_2017_3_a9,
     author = {B\"ulent Nafi \"Ornek},
     title = {Some estimates for angular derivative at the boundary},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {120--134},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2017_3_a9/}
}
TY  - JOUR
AU  - Bülent Nafi Örnek
TI  - Some estimates for angular derivative at the boundary
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2017
SP  - 120
EP  - 134
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2017_3_a9/
LA  - en
ID  - BASM_2017_3_a9
ER  - 
%0 Journal Article
%A Bülent Nafi Örnek
%T Some estimates for angular derivative at the boundary
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2017
%P 120-134
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2017_3_a9/
%G en
%F BASM_2017_3_a9
Bülent Nafi Örnek. Some estimates for angular derivative at the boundary. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2017), pp. 120-134. http://geodesic.mathdoc.fr/item/BASM_2017_3_a9/