Post-quantum no-key protocol
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2017), pp. 115-119

Voir la notice de l'article provenant de la source Math-Net.Ru

There is proposed three-pass no-key protocol that is secure to hypothetic attacks based on computations with using quantum computers. The main operations are multiplication and exponentiation in finite ground field $GF(p)$. Sender and receiver of secret message also use representation of some value $c\in GF(p)$ as product of two other values $R_1\in GF(p)$ and $R_2\in GF(p)$ one of which is selected at random. Then the values $R_1$ and $R_2$ are encrypted using different local keys.
@article{BASM_2017_3_a8,
     author = {N. A. Moldovyan and A. A. Moldovyan and V. A. Shcherbacov},
     title = {Post-quantum no-key protocol},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {115--119},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2017_3_a8/}
}
TY  - JOUR
AU  - N. A. Moldovyan
AU  - A. A. Moldovyan
AU  - V. A. Shcherbacov
TI  - Post-quantum no-key protocol
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2017
SP  - 115
EP  - 119
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2017_3_a8/
LA  - en
ID  - BASM_2017_3_a8
ER  - 
%0 Journal Article
%A N. A. Moldovyan
%A A. A. Moldovyan
%A V. A. Shcherbacov
%T Post-quantum no-key protocol
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2017
%P 115-119
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2017_3_a8/
%G en
%F BASM_2017_3_a8
N. A. Moldovyan; A. A. Moldovyan; V. A. Shcherbacov. Post-quantum no-key protocol. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2017), pp. 115-119. http://geodesic.mathdoc.fr/item/BASM_2017_3_a8/