Post-quantum no-key protocol
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2017), pp. 115-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

There is proposed three-pass no-key protocol that is secure to hypothetic attacks based on computations with using quantum computers. The main operations are multiplication and exponentiation in finite ground field $GF(p)$. Sender and receiver of secret message also use representation of some value $c\in GF(p)$ as product of two other values $R_1\in GF(p)$ and $R_2\in GF(p)$ one of which is selected at random. Then the values $R_1$ and $R_2$ are encrypted using different local keys.
@article{BASM_2017_3_a8,
     author = {N. A. Moldovyan and A. A. Moldovyan and V. A. Shcherbacov},
     title = {Post-quantum no-key protocol},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {115--119},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2017_3_a8/}
}
TY  - JOUR
AU  - N. A. Moldovyan
AU  - A. A. Moldovyan
AU  - V. A. Shcherbacov
TI  - Post-quantum no-key protocol
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2017
SP  - 115
EP  - 119
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2017_3_a8/
LA  - en
ID  - BASM_2017_3_a8
ER  - 
%0 Journal Article
%A N. A. Moldovyan
%A A. A. Moldovyan
%A V. A. Shcherbacov
%T Post-quantum no-key protocol
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2017
%P 115-119
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2017_3_a8/
%G en
%F BASM_2017_3_a8
N. A. Moldovyan; A. A. Moldovyan; V. A. Shcherbacov. Post-quantum no-key protocol. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2017), pp. 115-119. http://geodesic.mathdoc.fr/item/BASM_2017_3_a8/

[1] Proceedings of the 7th International Workshop on Post-Quantum Cryptography, PQCrypto 2016 (Fukuoka, Japan, February 24–26, 2016), Lecture Notes in Computer Science (LNCS) series, 9606, Springer, 2016, 270 pp.

[2] “Federal Register: Announcing Request for Nominations for Public-Key Post-Quantum Cryptographic Algorithms”, Federal Register. The Daily journal of the United States Goverment, 81:244 (2016), 92787–92788 URL: https://www.gpo.gov/fdsys/pkg/FR-2016-12-20/pdf/2016-30615.pdf

[3] Menezes A. J., Oorschot P. C., Vanstone S. A., Handbook of applied cryptography, CRC Press, New York–London, 1996, 780 pp. | MR

[4] International Standard ISO/IEC 14888-3:2006(E). Information technology – Security techniques – Digital Signatures with appendix – Part 3: Discrete logarithm based mechanisms

[5] Produce and check procedures of Electronic Digital Signature, GOST R 34.10-2012. Russian Federation Standard. Information Technology. Cryptographic data Security, Government Committee of the Russia for Standards, 2012 (in Russian)

[6] Lenstra A. K., “Integer factoring”, Designs, codes and cryptography, 19:2 (2000), 101–128 | DOI | MR | Zbl

[7] Moldovyan N. A., Moldovyan A. A., Shcherbacov V. A., “Generating Cubic Equations as a Method for Public Encryption”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2015, no. 3(79), 60–71 | MR | Zbl

[8] Moldovyan N. A., Moldovyan A. A., Shcherbacov A. V., “Deniable-encryption protocol using commutative transformation.”, Workshop on Foundations of Informatics, Proceedings (July 25–29, 2016, Chisinau), 2016, 285–298 | MR

[9] Shor P. W., “Polynomial-time algorithms for prime factorization and discrete logarithms on quantum computer”, SIAM Journal of Computing, 26 (1997), 1484–1509 | DOI | MR | Zbl

[10] Moldovyan D. N., Moldovyan N. A., “Cryptoschemes over hidden conjugacy search problem and attacks using homomorphisms”, Quasigroups and Related Systems, 18 (2010), 177–186 | MR | Zbl

[11] Moldovyan D. N., Moldovyan N. A., “A New Hard Problem over Non-Commutative Finite Groups for Cryptographic Protocols”, 5th Int. Conference MMM-ANCS 2010, Proceedings, LNCS, 6258, Springer Verlag, 2010, 183–194

[12] Moldovyan D. N., “Non-Commutative Finite Groups as Primitive of Public-Key Cryptoschemes”, Quasigroups and Related Systems, 18 (2010), 165–176 | MR | Zbl

[13] Hellman M. E., Pohlig S. C., Exponentiation Cryptographic Apparatus and Method., U. S. Patent # 4,424,414, 3 Jan. 1984