Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2017_3_a6, author = {Natalia Neagu and Victor Orlov and Mihail Popa}, title = {Invariant conditions of stability of unperturbed motion governed by some differential systems in the plane}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {88--106}, publisher = {mathdoc}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2017_3_a6/} }
TY - JOUR AU - Natalia Neagu AU - Victor Orlov AU - Mihail Popa TI - Invariant conditions of stability of unperturbed motion governed by some differential systems in the plane JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2017 SP - 88 EP - 106 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2017_3_a6/ LA - en ID - BASM_2017_3_a6 ER -
%0 Journal Article %A Natalia Neagu %A Victor Orlov %A Mihail Popa %T Invariant conditions of stability of unperturbed motion governed by some differential systems in the plane %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2017 %P 88-106 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2017_3_a6/ %G en %F BASM_2017_3_a6
Natalia Neagu; Victor Orlov; Mihail Popa. Invariant conditions of stability of unperturbed motion governed by some differential systems in the plane. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2017), pp. 88-106. http://geodesic.mathdoc.fr/item/BASM_2017_3_a6/
[1] Liapunov A. M., Collection of works, v. II, The general problem on stability of motion, Izd. Acad. Nauk SSSR, Moscow–Leningrad, 1956 (in Russian) | MR
[2] Sibirsky K. S., Introduction to the algebraic theory of invariants of differential equations, Nonlinear Science: Theory and Applications, Manchester University Press, 1988 | MR | Zbl
[3] Vulpe N. I., Polynomial bases of comitants of differential systems and their applications in qualitative theory, Ştiinţa, Kishinev, 1986 (in Russian) | MR
[4] Popa M. N., Application of algebraic methods to differential systems, Applied and Industrial Mathematics series of Piteşti University, 15, Flower Power, 2004 (in Romanian) | MR
[5] Gherştega N., Lie algebras for the three-dimensional differential system and applications, Synopsis of PhD thesis, Chişinău, 2006 (in Russian)
[6] Diaconescu O., Lie algebras and invariant integrals for polynomial differential systems, Synopsis of PhD thesis, Chişinău, 2008 (in Russian)
[7] Popa M. N., Pricop V., “Applications of algebraic methods in solving the center-focus problem”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2013, no. 1(71), 45–71 ; arXiv: 1310.4343 | MR | Zbl
[8] Neagu N., Cozma D., Popa M. N., “Invariant methods for studying stability of unperturbed motion in ternary differential systems with polynomial nonlinearities”, Bukovinian Mathematical Journal (Chernivtsi Nat. Univ.), 4:3–4 (2016), 133–139 | Zbl
[9] Merkin D. R., Introduction to the Theory of Stability, Springer-Verlag, NY, 1996 | MR | Zbl
[10] Malkin I. G., Theory of stability of motion, Nauka, Moscow, 1966 (in Russian) | MR | Zbl
[11] Cebanu V. M., “The minimal polynomial basis of comitants of a differential system with cubic nonlinearities”, Diff. Uravnenia, 21:3 (1985), 541–543 (in Russian)
[12] Calin Iu., “On rational bases of $GL(2,\mathbb R)$-comitants of planar polynomial systems of differential equations”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2003, no. 2(42), 69–86 | MR | Zbl
[13] Ciubotaru S., “Rational bases of $GL(2,\mathbb R)$-comitants and $GL(2,\mathbb R)$-invariants for the planar systems of differential equations with nonlinearities of the fourth degree”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2015, no. 3(79), 14–34 | MR | Zbl