Factorizations in the rings of the block matrices
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2017), pp. 23-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

The factorizations in the rings of the block triangular and the block diagonal matrices over an integral domain of finitely generated principal ideals are described. Conditions for existence and uniqueness up to the association of the factorizations in such rings are established. The construction of the factorizations of matrices is reduced to the factorizations of diagonal blocks of the block triangular matrices and the solving of the linear Sylvester matrix equations.
@article{BASM_2017_3_a1,
     author = {Vasyl' Petrychkovych and Nataliia Dzhaliuk},
     title = {Factorizations in the rings of the block matrices},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {23--33},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2017_3_a1/}
}
TY  - JOUR
AU  - Vasyl' Petrychkovych
AU  - Nataliia Dzhaliuk
TI  - Factorizations in the rings of the block matrices
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2017
SP  - 23
EP  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2017_3_a1/
LA  - en
ID  - BASM_2017_3_a1
ER  - 
%0 Journal Article
%A Vasyl' Petrychkovych
%A Nataliia Dzhaliuk
%T Factorizations in the rings of the block matrices
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2017
%P 23-33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2017_3_a1/
%G en
%F BASM_2017_3_a1
Vasyl' Petrychkovych; Nataliia Dzhaliuk. Factorizations in the rings of the block matrices. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2017), pp. 23-33. http://geodesic.mathdoc.fr/item/BASM_2017_3_a1/

[1] Borevich Z. I., “On factorizations of matrices over a principal ideal ring”, Proceedings of the Third All-Union Symposium on the Theory of Rings, Algebras and Modules, Abstracts of talks, University Press, Tartu, 1976, 19 (in Russian) | MR | Zbl

[2] Dzhaliuk N. S., Petrychkovych V. M., “The matrix linear unilateral and bilateral equations with two variables over commutative rings”, International Scholarly Research Network, ISRN Algebra, 2012 (2012), Article ID 205478, 14 pp. | DOI | MR | Zbl

[3] Feinberg R. B., “Equivalence of partitioned matrices”, J. Res. Bur. Stand. Sect., 80:1 (1976), 89–97 | DOI | MR | Zbl

[4] Gohberg I., Lancaster P., Rodman L., Matrix polynomials, Academic Press, New York, 1982 | MR | Zbl

[5] Gustafson W. H., “Roth's theorem over commutative rings”, Linear Algebra Appl., 23 (1979), 245–251 | DOI | MR | Zbl

[6] Gustafson W. H., Zelmanowitz J. M., “On matrix equivalence and matrix equations”, Linear Algebra Appl., 27 (1979), 219–224 | DOI | MR | Zbl

[7] Kazimirs'kii P. S., Factorization of matrix polynomials, Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of the NAS of Ukraine, L'viv, 2015 (in Ukrainian) | Zbl

[8] Lancaster P., Lambda-matrices and vibrating systems, Reprint of the original [New York, Pergamon Press, 1966], Dover Publications, Inc., Mineola, NY, 2002 | MR | Zbl

[9] Markus A. S., Introduction to the spectral theory of polynomial operator pencils, Transl. from the Russian by H. H. McFaden, Translations of Mathematical Monographs, 71, American Mathematical Society (AMS), Providence, RI, 1988 | MR | Zbl

[10] Martines F., Pereira E., “Block matrices and stability theory”, Tatra Mt. Math. Publ., 38 (2007), 147–162 | MR

[11] Newman M., Integral matrices, Academic Press, New York, 1972 | MR | Zbl

[12] Newman M., “The Smith normal form of a partitioned matrix”, J. Res. Bur. Stand. Sect., 78B:1 (1974), 3–6 | DOI | MR | Zbl

[13] Petrychkovych V. M., “Cell-triangular and cell-diagonal factorizations of cell-triangular and cell-diagonal polynomial matrices”, Math. Notes, 37:6 (1985), 431–435 | DOI | MR | Zbl

[14] Petrychkovych V. M., Generalized Equivalence of Matrices and its Collections and Factorization of Matrices over Rings, Pidstryhach Inst. Appl. Probl. Mech. and Math. of the NAS of Ukraine, L'viv, 2015 (in Ukrainian) | Zbl

[15] Roth W. E., “The equations $AX-YB=C$ and $AX-XB=C$ in matrices”, Proc. Amer. Math. Soc., 3 (1952), 392–396 | MR | Zbl

[16] Yang Y., Holtti H., “The factorization of block matrices with generalized geometric progression rows”, Linear Algebra Appl., 387 (2004), 51–67 | DOI | MR | Zbl