Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2017_2_a7, author = {Valeriu Popa}, title = {On {LCA} groups whose ring of continuous endomorphisms satisfies $DCC$ on closed ideals}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {88--111}, publisher = {mathdoc}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2017_2_a7/} }
TY - JOUR AU - Valeriu Popa TI - On LCA groups whose ring of continuous endomorphisms satisfies $DCC$ on closed ideals JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2017 SP - 88 EP - 111 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2017_2_a7/ LA - en ID - BASM_2017_2_a7 ER -
Valeriu Popa. On LCA groups whose ring of continuous endomorphisms satisfies $DCC$ on closed ideals. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2017), pp. 88-111. http://geodesic.mathdoc.fr/item/BASM_2017_2_a7/
[1] Armacost D. L., The structure of locally compact abelian groups, Pure and Applied Mathematics Series, 68, Marcel Dekker, New York, 1981 | MR | Zbl
[2] Armacost D. L., Armacost W. L., “On $\mathbb Q$-dense and densely divisible LCA groups”, Proc. Amer. Math. Sos., 36 (1976), 301–305 | MR
[3] Bourbaki N., Topologie generale, Chapter 1–2, Éléments de mathematique, Nauka, Moscow, 1968 | MR
[4] Bourbaki N., Topologie generale, Chapter 3–8, Éléments de mathematique, Nauka, Moscow, 1969
[5] Bourbaki N., Topologie generale, Chapter 9–20, Éléments de mathematique, Nauka, Moscow, 1975 | Zbl
[6] Fuchs L., Infinite abelian groups, v. 1, Academic Press, New York–London, 1970 | MR | Zbl
[7] Fuchs L., Infinite abelian groups, v. 2, Academic Press, New York–London, 1973 | MR | Zbl
[8] Hewitt E., Ross K., Abstract Harmonic Analysis, v. 1, Academic Press, New York, 1963 | MR
[9] Kertész A., Lectures on artinian rings, Académiai Kiadó, Budapest, 1987 | MR
[10] Lam T. Y., A first course in noncommutative rings, Graduate texts in mathematics, 131, Springer-Verlag, Berlin–Heidelberg–New York, 1991 | DOI | MR | Zbl
[11] Popa V., “Units, idempotents and nilpotents of an endomorphism ring. I”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 1996, no. 3(22), 83–93 | MR | Zbl
[12] Popa V., “On LCA groups whose rings of continuous endomorphisms have at most two non-trivial closed ideals. I”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2011, no. 3(67), 91–107 | MR | Zbl
[13] Robertson L., “Connectivity, divisibility and torsion”, Trans. Amer. Moath. Sos., 128 (1967), 482–505 | DOI | MR | Zbl
[14] Rose H., Linear algebra: a pure mathematical approach, Birkhäuser Verlag, Basel–Boston–Berlin, 2002 | MR | Zbl
[15] Szász F., “Die abelschen Gruppen, deren volle Endomorphismenringe die Minimalbedingung für Hauptrechtsideale erfüllen”, Monatshefte Math., 65 (1961), 150–153 | DOI | MR | Zbl