Solvability of the boundary value problem for the equation of transition processes in semiconductors with a~fractional time derivative
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2017), pp. 51-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions are established for the unique solvability of the initial boundary value problem for the equation describing the transition processes in semiconductors. The method of studying is the reducing to the Cauchy problem for a degenerate evolution equation of fractional order in a Banach space. Using the functional calculus in the Banach algebra of bounded linear operators a form of the considered problem solution is performed.
@article{BASM_2017_1_a4,
     author = {Dmitriy M. Gordievskikh},
     title = {Solvability of the boundary value problem for the equation of transition processes in semiconductors with a~fractional time derivative},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {51--56},
     publisher = {mathdoc},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2017_1_a4/}
}
TY  - JOUR
AU  - Dmitriy M. Gordievskikh
TI  - Solvability of the boundary value problem for the equation of transition processes in semiconductors with a~fractional time derivative
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2017
SP  - 51
EP  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2017_1_a4/
LA  - en
ID  - BASM_2017_1_a4
ER  - 
%0 Journal Article
%A Dmitriy M. Gordievskikh
%T Solvability of the boundary value problem for the equation of transition processes in semiconductors with a~fractional time derivative
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2017
%P 51-56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2017_1_a4/
%G en
%F BASM_2017_1_a4
Dmitriy M. Gordievskikh. Solvability of the boundary value problem for the equation of transition processes in semiconductors with a~fractional time derivative. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2017), pp. 51-56. http://geodesic.mathdoc.fr/item/BASM_2017_1_a4/

[1] Bajlekova E. G., Fractional Evolution Equations in Banach Spaces, PhD thesis, University Press Facilities, Eindhoven University of Technology, 2001 | MR | Zbl

[2] Sveshnikov A. G., Altmshin A. B., Korpusov M. O., Pletner Yu. D., Linear and Nonlinear Sobolev Type Equations, Fizmatlit, Moscow, 2007 | Zbl

[3] Samko S. G., Kilbas A. A., Marichev O. I., Fractional Integrals and Derivatives: Theory and Applications, OPA, Amsterdam, 1993 | MR

[4] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam–Boston–Heidelberg, 2006 | MR | Zbl

[5] Tarasov V. E., Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, New York, 2011 | MR

[6] Uchaikin V. V., Fractional Derivatives for Physicist and Engineers, v. I, Background and Theory, Higher Education Press, Beijin, 2014 | MR

[7] Plekhanova M. V., Islamova A. F., “Solvability of mixed-type optimal control problems for distributed systems”, Russian Mathematics, 55:7 (2011), 30–39 | DOI | MR | Zbl

[8] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003 | MR | Zbl

[9] Fedorov V. E., Debbouche A., “A class of degenerate fractional evolution systems in Banach spaces”, Differential Equations, 49 (2013), 1569–1576 | DOI | MR | Zbl

[10] Fedorov V. E., Gordievskikh D. M., “Resolving operators of degenerate evolution equations with fractional derivative with respect to time”, Russian Mathematics, 59:1 (2015), 60–70 | DOI | MR | Zbl

[11] Li F., Liang J., Xu H.-K., “Existence of mild solutions for fractional integrodifferential equations of Sobolev type with nonlocal conditions”, Journal of Mathematical Analysis and Applications, 391 (2012), 510–525 | DOI | MR | Zbl

[12] Ladyzhenskaya O. A., The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, Science Publishers, New York–London–Paris, 1969 | MR | Zbl