Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2017_1_a4, author = {Dmitriy M. Gordievskikh}, title = {Solvability of the boundary value problem for the equation of transition processes in semiconductors with a~fractional time derivative}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {51--56}, publisher = {mathdoc}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2017_1_a4/} }
TY - JOUR AU - Dmitriy M. Gordievskikh TI - Solvability of the boundary value problem for the equation of transition processes in semiconductors with a~fractional time derivative JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2017 SP - 51 EP - 56 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2017_1_a4/ LA - en ID - BASM_2017_1_a4 ER -
%0 Journal Article %A Dmitriy M. Gordievskikh %T Solvability of the boundary value problem for the equation of transition processes in semiconductors with a~fractional time derivative %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2017 %P 51-56 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2017_1_a4/ %G en %F BASM_2017_1_a4
Dmitriy M. Gordievskikh. Solvability of the boundary value problem for the equation of transition processes in semiconductors with a~fractional time derivative. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2017), pp. 51-56. http://geodesic.mathdoc.fr/item/BASM_2017_1_a4/
[1] Bajlekova E. G., Fractional Evolution Equations in Banach Spaces, PhD thesis, University Press Facilities, Eindhoven University of Technology, 2001 | MR | Zbl
[2] Sveshnikov A. G., Altmshin A. B., Korpusov M. O., Pletner Yu. D., Linear and Nonlinear Sobolev Type Equations, Fizmatlit, Moscow, 2007 | Zbl
[3] Samko S. G., Kilbas A. A., Marichev O. I., Fractional Integrals and Derivatives: Theory and Applications, OPA, Amsterdam, 1993 | MR
[4] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam–Boston–Heidelberg, 2006 | MR | Zbl
[5] Tarasov V. E., Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, New York, 2011 | MR
[6] Uchaikin V. V., Fractional Derivatives for Physicist and Engineers, v. I, Background and Theory, Higher Education Press, Beijin, 2014 | MR
[7] Plekhanova M. V., Islamova A. F., “Solvability of mixed-type optimal control problems for distributed systems”, Russian Mathematics, 55:7 (2011), 30–39 | DOI | MR | Zbl
[8] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003 | MR | Zbl
[9] Fedorov V. E., Debbouche A., “A class of degenerate fractional evolution systems in Banach spaces”, Differential Equations, 49 (2013), 1569–1576 | DOI | MR | Zbl
[10] Fedorov V. E., Gordievskikh D. M., “Resolving operators of degenerate evolution equations with fractional derivative with respect to time”, Russian Mathematics, 59:1 (2015), 60–70 | DOI | MR | Zbl
[11] Li F., Liang J., Xu H.-K., “Existence of mild solutions for fractional integrodifferential equations of Sobolev type with nonlocal conditions”, Journal of Mathematical Analysis and Applications, 391 (2012), 510–525 | DOI | MR | Zbl
[12] Ladyzhenskaya O. A., The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, Science Publishers, New York–London–Paris, 1969 | MR | Zbl