Stationary Nash equilibria for average stochastic games with finite state and action spaces
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2016), pp. 71-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of the existence of stationary Nash equilibria in infinite $n$-person stochastic games with limiting average payoff criteria for the players. The state and action spaces in the games are assumed to be finite. We present some results for the existence of stationary Nash equilibria in a multichain average stochastic game with $n$ players. Based on constructive proof of these results we propose an approach for determining the optimal stationary strategies of the players in the case when stationary Nash equilibria in the game exist.
@article{BASM_2016_2_a6,
     author = {Dmitrii Lozovanu},
     title = {Stationary {Nash} equilibria for average stochastic games with finite state and action spaces},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {71--92},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2016_2_a6/}
}
TY  - JOUR
AU  - Dmitrii Lozovanu
TI  - Stationary Nash equilibria for average stochastic games with finite state and action spaces
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2016
SP  - 71
EP  - 92
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2016_2_a6/
LA  - en
ID  - BASM_2016_2_a6
ER  - 
%0 Journal Article
%A Dmitrii Lozovanu
%T Stationary Nash equilibria for average stochastic games with finite state and action spaces
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2016
%P 71-92
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2016_2_a6/
%G en
%F BASM_2016_2_a6
Dmitrii Lozovanu. Stationary Nash equilibria for average stochastic games with finite state and action spaces. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2016), pp. 71-92. http://geodesic.mathdoc.fr/item/BASM_2016_2_a6/

[1] Boyd S., Vandenberghe L., Convex Optimization, University Press, Cambridge, 2004 | MR | Zbl

[2] Dasgupta P., Maskin E., “The existence of Equilibrium in Discontinuous Economic Games”, Review of Economic Studies, 53 (1986), 1–26 | DOI | MR | Zbl

[3] Debreu G., “A Social Equilibrium Existence Theorem”, Proceedings of the National Academy of Sciences, 1952, 386–393 | MR

[4] Filar J. A., Vrieze K., Competitive Markov Decision Processes, Springer, 1997 | MR | Zbl

[5] Filar J. A., Schultz T. A., Thuijsman F., Vrieze O. J., “Nonlinear programming and stationary equilibria of stochastic games”, Mathematical Programming, 5 (1991), 227–237 | DOI | MR

[6] Fink A. M., “Equilibrium in a stochastic $n$-person game”, J. Sci. Hiroshima Univ. Series A-1, 28 (1964), 89–93 | MR | Zbl

[7] Flesch J., Thuijsman F., Vrieze K., “Cyclic Markov equilibria in stochastic games”, International Journal of Game Theory, 26:3 (1997), 303–314 | DOI | MR | Zbl

[8] Gillette D., “Stochastic games with zero stop probabilities”, Contribution to the Theory of Games, Ann. Math. Stud., 39, Princeton, 1957, 179–187 | MR | Zbl

[9] Lozovanu D., “The game-theoretical approach to Markov decision problems and determining Nash equilibria for stochastic positional games”, Int. J. Mathematical Modelling and Numerical Optimization, 2:2 (2011), 162–164 | DOI

[10] Lozovanu D., Pickl S., “On Nash equilibria for stochastic games and determining the optimal strategies of the players”, Contribution to game theory and management (St. Petersburg University), 8 (2015), 187–198 | MR

[11] Lozovanu D., Pickl S., Optimization of Stochastic Discrete Systems and Control on Complex Networks, Springer, 2015 | MR | Zbl

[12] Mertens J. F., Neyman A., “Stochastic games”, Int. J. of Game Theory, 10 (1981), 53–66 | DOI | MR | Zbl

[13] Neyman A., Sorin S., Stochastic games and applications, NATO ASI series, 570, Kluwer Academic press, 2003 | MR | Zbl

[14] Puterman M., Markov Decision Processes: Stochastic Dynamic Programming, John Wiley, New Jersey, 2005

[15] Reny F., “On the existence of Pure and Mixed Strategy Nash Equilibria In Discontinuous Games”, Economertrica, 67 (1999), 1029–1056 | DOI | MR | Zbl

[16] Rogers P. D., Nonzero-Sum Stochastic games, PhD thesis, Report ORC 68-8, 1969 | MR

[17] Shapley L., “Stochastic games”, Proc. Natl. Acad. Sci. U.S.A., 39 (1953), 1095–1100 | DOI | MR | Zbl

[18] Simon L., “Games with Discontinuous Payoffs”, Review of Economic Studies, 54 (1987), 569–597 | DOI | MR | Zbl

[19] Sobel M., “Noncooperative stochastic games”, The Annals of Mathematical statistics, 42 (1971), 1930–1035 | DOI | MR

[20] Vieille N., “Equilibrium in 2-person stochastic games I: A reduction”, Israel J. Math., 119:1 (2000), 55–91 ; “II: The case of recursive games”, Israel J. Math., 119:1, 93–126 | DOI | MR | Zbl | DOI | MR | Zbl

[21] Vrieze O. V., Stochastic games with finite state and actions spaces, CWI-Tract, Center of Mathematics and Computer Science, 33, Amsterdam, 1987, 295–320 | MR