Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2016_2_a6, author = {Dmitrii Lozovanu}, title = {Stationary {Nash} equilibria for average stochastic games with finite state and action spaces}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {71--92}, publisher = {mathdoc}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2016_2_a6/} }
TY - JOUR AU - Dmitrii Lozovanu TI - Stationary Nash equilibria for average stochastic games with finite state and action spaces JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2016 SP - 71 EP - 92 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2016_2_a6/ LA - en ID - BASM_2016_2_a6 ER -
%0 Journal Article %A Dmitrii Lozovanu %T Stationary Nash equilibria for average stochastic games with finite state and action spaces %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2016 %P 71-92 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2016_2_a6/ %G en %F BASM_2016_2_a6
Dmitrii Lozovanu. Stationary Nash equilibria for average stochastic games with finite state and action spaces. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2016), pp. 71-92. http://geodesic.mathdoc.fr/item/BASM_2016_2_a6/
[1] Boyd S., Vandenberghe L., Convex Optimization, University Press, Cambridge, 2004 | MR | Zbl
[2] Dasgupta P., Maskin E., “The existence of Equilibrium in Discontinuous Economic Games”, Review of Economic Studies, 53 (1986), 1–26 | DOI | MR | Zbl
[3] Debreu G., “A Social Equilibrium Existence Theorem”, Proceedings of the National Academy of Sciences, 1952, 386–393 | MR
[4] Filar J. A., Vrieze K., Competitive Markov Decision Processes, Springer, 1997 | MR | Zbl
[5] Filar J. A., Schultz T. A., Thuijsman F., Vrieze O. J., “Nonlinear programming and stationary equilibria of stochastic games”, Mathematical Programming, 5 (1991), 227–237 | DOI | MR
[6] Fink A. M., “Equilibrium in a stochastic $n$-person game”, J. Sci. Hiroshima Univ. Series A-1, 28 (1964), 89–93 | MR | Zbl
[7] Flesch J., Thuijsman F., Vrieze K., “Cyclic Markov equilibria in stochastic games”, International Journal of Game Theory, 26:3 (1997), 303–314 | DOI | MR | Zbl
[8] Gillette D., “Stochastic games with zero stop probabilities”, Contribution to the Theory of Games, Ann. Math. Stud., 39, Princeton, 1957, 179–187 | MR | Zbl
[9] Lozovanu D., “The game-theoretical approach to Markov decision problems and determining Nash equilibria for stochastic positional games”, Int. J. Mathematical Modelling and Numerical Optimization, 2:2 (2011), 162–164 | DOI
[10] Lozovanu D., Pickl S., “On Nash equilibria for stochastic games and determining the optimal strategies of the players”, Contribution to game theory and management (St. Petersburg University), 8 (2015), 187–198 | MR
[11] Lozovanu D., Pickl S., Optimization of Stochastic Discrete Systems and Control on Complex Networks, Springer, 2015 | MR | Zbl
[12] Mertens J. F., Neyman A., “Stochastic games”, Int. J. of Game Theory, 10 (1981), 53–66 | DOI | MR | Zbl
[13] Neyman A., Sorin S., Stochastic games and applications, NATO ASI series, 570, Kluwer Academic press, 2003 | MR | Zbl
[14] Puterman M., Markov Decision Processes: Stochastic Dynamic Programming, John Wiley, New Jersey, 2005
[15] Reny F., “On the existence of Pure and Mixed Strategy Nash Equilibria In Discontinuous Games”, Economertrica, 67 (1999), 1029–1056 | DOI | MR | Zbl
[16] Rogers P. D., Nonzero-Sum Stochastic games, PhD thesis, Report ORC 68-8, 1969 | MR
[17] Shapley L., “Stochastic games”, Proc. Natl. Acad. Sci. U.S.A., 39 (1953), 1095–1100 | DOI | MR | Zbl
[18] Simon L., “Games with Discontinuous Payoffs”, Review of Economic Studies, 54 (1987), 569–597 | DOI | MR | Zbl
[19] Sobel M., “Noncooperative stochastic games”, The Annals of Mathematical statistics, 42 (1971), 1930–1035 | DOI | MR
[20] Vieille N., “Equilibrium in 2-person stochastic games I: A reduction”, Israel J. Math., 119:1 (2000), 55–91 ; “II: The case of recursive games”, Israel J. Math., 119:1, 93–126 | DOI | MR | Zbl | DOI | MR | Zbl
[21] Vrieze O. V., Stochastic games with finite state and actions spaces, CWI-Tract, Center of Mathematics and Computer Science, 33, Amsterdam, 1987, 295–320 | MR