The multiplicative Zagreb co-indices on two graph operators
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2016), pp. 18-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$. The first and second multiplicative Zagreb co-indices are defined as: $$\overline\prod_1(G)=\prod_{uv\notin E(G)}[d_G(u)+d_G(v)],\quad\overline\prod_2(G)=\prod_{uv\notin E(G)}[d_G(u)d_G(v)], $$ respectively, where $d_G(u)$ is the degree of the vertex $u$ of $G$. The aim of this paper is to investigate the multiplicative Zagreb co-indices of the subdivision graphs of tadpole graphs and wheel graphs.
@article{BASM_2016_2_a1,
     author = {Mansoureh Deldar and Mehdi Alaeiyan},
     title = {The multiplicative {Zagreb} co-indices on two graph operators},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {18--26},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2016_2_a1/}
}
TY  - JOUR
AU  - Mansoureh Deldar
AU  - Mehdi Alaeiyan
TI  - The multiplicative Zagreb co-indices on two graph operators
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2016
SP  - 18
EP  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2016_2_a1/
LA  - en
ID  - BASM_2016_2_a1
ER  - 
%0 Journal Article
%A Mansoureh Deldar
%A Mehdi Alaeiyan
%T The multiplicative Zagreb co-indices on two graph operators
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2016
%P 18-26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2016_2_a1/
%G en
%F BASM_2016_2_a1
Mansoureh Deldar; Mehdi Alaeiyan. The multiplicative Zagreb co-indices on two graph operators. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2016), pp. 18-26. http://geodesic.mathdoc.fr/item/BASM_2016_2_a1/

[1] Ashrafi A. R., Doslic T., Hamzeh A., “The Zagreb co-indices of graph operation”, Discrete Appl. Math., 158 (2010), 1571–1578 | DOI | MR | Zbl

[2] Ashrafi A. R., Doslic T., Hamzeh A., “Extremal graphs with respect to the Zagreb coindices”, MATCH Commun. Math. Comput. Chem., 65 (2011), 85–92 | MR | Zbl

[3] Balaban A. T., Motoc I., Bonchev D., Mekenyan O., “Topological indices for structure-activity”, Correction, Topics Curr. Chem., 114 (1983), 21–55 | DOI

[4] Das K. C., Gutman I., Zhou B., “Some properties of the second Zagrreb index”, MATCH Commun. Math. Comput. Chem., 52 (2004), 103–112 | MR | Zbl

[5] Deng H., “A unified approach to the extremal Zagreb indices for trees, unicyclic graphs and bicyclic graphs”, MATCH Commun. Math. Comput. Chem., 57 (2007), 597–616 | MR | Zbl

[6] Douglas B. W., Introduction in graph theory, Second ed., Prentic Hall, 2001

[7] Doslic T., “Vertex-weighted Wienner polynomials for composite graphs”, Ars Math. Contemp., 1 (2006), 66–80 | MR

[8] Eliasi M., Iranmanesh A., Gutman I., “Multiplicative versions of first Zagreb index”, MATCH Commun. Math. Comput. Chem., 68 (2012), 217–230 | MR | Zbl

[9] Gutman I., “Multiplicative Zagreb of Numeri-Katayama index”, Appl. Math. Lett., 25 (2012), 83–92 | DOI

[10] Gutman I., Das K. C., “The first Zagreb index 30 years after”, MATCH Commun. Math. Comput. Chem., 50 (2004), 83–92 | MR | Zbl

[11] Gutman I., Lee Y. N., Yeh Y. N., Lau Y.L., “Some recent results in the theory of wiener number”, Ind. J. Chem., 32 (1972), 51–61

[12] Gutman I., Ruscic B., Trinajstic N., Wilcox C. F., “Graph theory and molecular orbitals. XII. A cyclic polynes”, J. Chem. Phys., 62 (1975), 3399–3405 | DOI

[13] Gutman I., Trinajstic N., “Graph theory and molecular orbitals, III. Total $\pi$-electron energy of alternant hydrocarbons”, Chem. Phys. Lett., 17 (1972), 535–538 | DOI

[14] Xu K., Das K. C., Tang T., “On the multiplicative Zagreb co-index of graphs”, Opuscula Math., 33 (2013), 191–204 | DOI | MR | Zbl

[15] Liu B., You Z., “A survery on compairing Zagreb indices”, MATCH Commun. Math. Comput. Chem., 65 (2011), 581–593 | MR | Zbl

[16] Ranjini P. S., Lokesha V., Rajan M. A., “On Zagreb indices of the subdivision graphs”, Int. J. Math. Sci. Eng. Appl., 4 (2010), 221–228 | MR

[17] Weisstein E. W., Tadpole graph, From Mathworld-A Wolfram Web Resurce

[18] Xu K., Das K. C., “Tree unicyclic, and bicyclic graphs extremal with respect to multiplicative sum Zagreb index”, MATCH Commun. Math. Comput. Chem., 68 (2012), 257–272 | MR | Zbl

[19] Xu K., Hua H., “A unified approach to extremal multiplicative Zagreb indices for trees, unicyclic and bicyclic graphs”, MATCH Commun. Math. Comput. Chem., 68 (2012), 241–256 | MR | Zbl