Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2016_2_a1, author = {Mansoureh Deldar and Mehdi Alaeiyan}, title = {The multiplicative {Zagreb} co-indices on two graph operators}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {18--26}, publisher = {mathdoc}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2016_2_a1/} }
TY - JOUR AU - Mansoureh Deldar AU - Mehdi Alaeiyan TI - The multiplicative Zagreb co-indices on two graph operators JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2016 SP - 18 EP - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2016_2_a1/ LA - en ID - BASM_2016_2_a1 ER -
Mansoureh Deldar; Mehdi Alaeiyan. The multiplicative Zagreb co-indices on two graph operators. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2016), pp. 18-26. http://geodesic.mathdoc.fr/item/BASM_2016_2_a1/
[1] Ashrafi A. R., Doslic T., Hamzeh A., “The Zagreb co-indices of graph operation”, Discrete Appl. Math., 158 (2010), 1571–1578 | DOI | MR | Zbl
[2] Ashrafi A. R., Doslic T., Hamzeh A., “Extremal graphs with respect to the Zagreb coindices”, MATCH Commun. Math. Comput. Chem., 65 (2011), 85–92 | MR | Zbl
[3] Balaban A. T., Motoc I., Bonchev D., Mekenyan O., “Topological indices for structure-activity”, Correction, Topics Curr. Chem., 114 (1983), 21–55 | DOI
[4] Das K. C., Gutman I., Zhou B., “Some properties of the second Zagrreb index”, MATCH Commun. Math. Comput. Chem., 52 (2004), 103–112 | MR | Zbl
[5] Deng H., “A unified approach to the extremal Zagreb indices for trees, unicyclic graphs and bicyclic graphs”, MATCH Commun. Math. Comput. Chem., 57 (2007), 597–616 | MR | Zbl
[6] Douglas B. W., Introduction in graph theory, Second ed., Prentic Hall, 2001
[7] Doslic T., “Vertex-weighted Wienner polynomials for composite graphs”, Ars Math. Contemp., 1 (2006), 66–80 | MR
[8] Eliasi M., Iranmanesh A., Gutman I., “Multiplicative versions of first Zagreb index”, MATCH Commun. Math. Comput. Chem., 68 (2012), 217–230 | MR | Zbl
[9] Gutman I., “Multiplicative Zagreb of Numeri-Katayama index”, Appl. Math. Lett., 25 (2012), 83–92 | DOI
[10] Gutman I., Das K. C., “The first Zagreb index 30 years after”, MATCH Commun. Math. Comput. Chem., 50 (2004), 83–92 | MR | Zbl
[11] Gutman I., Lee Y. N., Yeh Y. N., Lau Y.L., “Some recent results in the theory of wiener number”, Ind. J. Chem., 32 (1972), 51–61
[12] Gutman I., Ruscic B., Trinajstic N., Wilcox C. F., “Graph theory and molecular orbitals. XII. A cyclic polynes”, J. Chem. Phys., 62 (1975), 3399–3405 | DOI
[13] Gutman I., Trinajstic N., “Graph theory and molecular orbitals, III. Total $\pi$-electron energy of alternant hydrocarbons”, Chem. Phys. Lett., 17 (1972), 535–538 | DOI
[14] Xu K., Das K. C., Tang T., “On the multiplicative Zagreb co-index of graphs”, Opuscula Math., 33 (2013), 191–204 | DOI | MR | Zbl
[15] Liu B., You Z., “A survery on compairing Zagreb indices”, MATCH Commun. Math. Comput. Chem., 65 (2011), 581–593 | MR | Zbl
[16] Ranjini P. S., Lokesha V., Rajan M. A., “On Zagreb indices of the subdivision graphs”, Int. J. Math. Sci. Eng. Appl., 4 (2010), 221–228 | MR
[17] Weisstein E. W., Tadpole graph, From Mathworld-A Wolfram Web Resurce
[18] Xu K., Das K. C., “Tree unicyclic, and bicyclic graphs extremal with respect to multiplicative sum Zagreb index”, MATCH Commun. Math. Comput. Chem., 68 (2012), 257–272 | MR | Zbl
[19] Xu K., Hua H., “A unified approach to extremal multiplicative Zagreb indices for trees, unicyclic and bicyclic graphs”, MATCH Commun. Math. Comput. Chem., 68 (2012), 241–256 | MR | Zbl