Belousov's theorem and the quantum Yang--Baxter equation
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2016), pp. 7-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

Quantum quasigroups are self-dual objects that provide a general framework for the nonassociative extension of quantum group techniques. Within this context, the classical theorem of Belousov on the isotopy of distributive quasigroups and commutative Moufang loops is reinterpreted to yield solutions of the quantum Yang–Baxter equation. A new concept of principal bimagma isotopy is introduced.
@article{BASM_2016_1_a1,
     author = {Jonathan D. H. Smith},
     title = {Belousov's theorem and the quantum {Yang--Baxter} equation},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {7--23},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2016_1_a1/}
}
TY  - JOUR
AU  - Jonathan D. H. Smith
TI  - Belousov's theorem and the quantum Yang--Baxter equation
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2016
SP  - 7
EP  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2016_1_a1/
LA  - en
ID  - BASM_2016_1_a1
ER  - 
%0 Journal Article
%A Jonathan D. H. Smith
%T Belousov's theorem and the quantum Yang--Baxter equation
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2016
%P 7-23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2016_1_a1/
%G en
%F BASM_2016_1_a1
Jonathan D. H. Smith. Belousov's theorem and the quantum Yang--Baxter equation. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2016), pp. 7-23. http://geodesic.mathdoc.fr/item/BASM_2016_1_a1/

[1] Belousov V. D., “On the structure of distributive quasigroups”, Mat. Sbornik, 50(92):3 (1960), 267–298 (in Russian) | MR | Zbl

[2] Belousov V. D., Foundations of the Theory of Quasigroups and Loops, Nauka, Moscow, 1967 (in Russian) | MR

[3] Chari V., Pressley A., A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1994 | MR | Zbl

[4] Davey B. A., Davis G., “Tensor products and entropic varieties”, Algebra Universalis, 21 (1985), 68–88 | DOI | MR | Zbl

[5] Drinfeld V. G., “On some unsolved problems in quantum group theory”, Quantum Groups, Springer Lecture Notes in Mathematics, 1510, ed. P. P. Kulish, Springer-Verlag, Berlin, 1992, 1–8 | DOI | MR

[6] Fischer B., “Distributive Quasigruppen endlicher Ordnung”, Math. Z., 83 (1964), 267–303 | DOI | MR | Zbl

[7] Romanowska A. B., Smith J. D. H., “On Hopf algebras in entropic Jónsson–Tarski varieties”, Bull. Korean Math. Soc., 52 (2015), 1587–1606 | DOI | MR | Zbl

[8] Smith J. D. H., “Finite distributive quasigroups”, Math. Proc. Camb. Phil. Soc., 80 (1976), 37–41 | DOI | MR | Zbl

[9] Smith J. D. H., An Introduction to Quasigroups and Their Representations, Chapman and Hall/CRC, Boca Raton, FL, 2007 | MR | Zbl

[10] Smith J. D. H., “One-sided quantum quasigroups and loops”, Demonstr. Math., 48 (2015), 620–636 | DOI | MR | Zbl

[11] Smith J. D. H., “Quantum quasigroups and loops”, J. Alg., 456 (2016), 46–75 | DOI | MR | Zbl

[12] Smith J. D. H., Quantum idempotence, distributivity, and the Yang-Baxter equation, Preprint, 2015 | MR

[13] Smith J. D. H., Romanowska A. B., Post-Modern Algebra, Wiley, New York, NY, 1999 | MR | Zbl

[14] Street R., Quantum Groups, Cambridge University Press, Cambridge, 2007 | MR | Zbl