Cubic differential systems with two affine real non-parallel invariant straight lines of maximal multiplicity
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2015), pp. 79-101

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we classify all differential real cubic systems possessing two affine real non-parallel invariant straight lines of maximal multiplicity. We show that the maximal multiplicity of each of these lines is at most three. The maximal sequences of multiplicities: $m(3,3;1)$, $m(3,2;2)$, $m(3,1;3)$, $m(2,2;3)$, $m_\infty(2,1;3)$, $m_\infty(1,1;3)$ are determined. The normal forms and the corresponding perturbations of the cubic systems which realize these cases are given.
@article{BASM_2015_3_a6,
     author = {Olga Vacara\c{s}},
     title = {Cubic differential systems with two affine real non-parallel invariant straight lines of maximal multiplicity},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {79--101},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2015_3_a6/}
}
TY  - JOUR
AU  - Olga Vacaraş
TI  - Cubic differential systems with two affine real non-parallel invariant straight lines of maximal multiplicity
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2015
SP  - 79
EP  - 101
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2015_3_a6/
LA  - en
ID  - BASM_2015_3_a6
ER  - 
%0 Journal Article
%A Olga Vacaraş
%T Cubic differential systems with two affine real non-parallel invariant straight lines of maximal multiplicity
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2015
%P 79-101
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2015_3_a6/
%G en
%F BASM_2015_3_a6
Olga Vacaraş. Cubic differential systems with two affine real non-parallel invariant straight lines of maximal multiplicity. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2015), pp. 79-101. http://geodesic.mathdoc.fr/item/BASM_2015_3_a6/