Cubic differential systems with two affine real non-parallel invariant straight lines of maximal multiplicity
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2015), pp. 79-101
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article we classify all differential real cubic systems possessing two affine real non-parallel invariant straight lines of maximal multiplicity. We show that the maximal multiplicity of each of these lines is at most three. The maximal sequences of multiplicities: $m(3,3;1)$, $m(3,2;2)$, $m(3,1;3)$, $m(2,2;3)$, $m_\infty(2,1;3)$, $m_\infty(1,1;3)$ are determined. The normal forms and the corresponding perturbations of the cubic systems which realize these cases are given.
@article{BASM_2015_3_a6,
author = {Olga Vacara\c{s}},
title = {Cubic differential systems with two affine real non-parallel invariant straight lines of maximal multiplicity},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {79--101},
publisher = {mathdoc},
number = {3},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2015_3_a6/}
}
TY - JOUR AU - Olga Vacaraş TI - Cubic differential systems with two affine real non-parallel invariant straight lines of maximal multiplicity JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2015 SP - 79 EP - 101 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2015_3_a6/ LA - en ID - BASM_2015_3_a6 ER -
%0 Journal Article %A Olga Vacaraş %T Cubic differential systems with two affine real non-parallel invariant straight lines of maximal multiplicity %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2015 %P 79-101 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2015_3_a6/ %G en %F BASM_2015_3_a6
Olga Vacaraş. Cubic differential systems with two affine real non-parallel invariant straight lines of maximal multiplicity. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2015), pp. 79-101. http://geodesic.mathdoc.fr/item/BASM_2015_3_a6/