Generating cubic equations as a~method for public encryption
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2015), pp. 60-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper introduces a new method for public encryption in which the enciphering process is performed as generating coefficients of some cubic equation over finite ring and the deciphering process is solving the equation. Security of the method is based on difficulty of factoring problem, namely, difficulty of factoring a composite number $n$ that serves as public key. The private key is the pair of primes $p$ and $q$ such that $n=pq$. The deciphering process is performed as solving cubic congruence modulo $n$. Finding roots of cubic equations in the fields $GF(p)$ and $GF(q)$ is the first step of the decryption. We have described a method for solving cubic equations defined over ground finite fields. The proposed public encryption algorithm has been applied to design bi-deniable encryption protocol.
@article{BASM_2015_3_a4,
     author = {N. A. Moldovyan and A. A. Moldovyan and V. A. Shcherbacov},
     title = {Generating cubic equations as a~method for public encryption},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {60--71},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2015_3_a4/}
}
TY  - JOUR
AU  - N. A. Moldovyan
AU  - A. A. Moldovyan
AU  - V. A. Shcherbacov
TI  - Generating cubic equations as a~method for public encryption
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2015
SP  - 60
EP  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2015_3_a4/
LA  - en
ID  - BASM_2015_3_a4
ER  - 
%0 Journal Article
%A N. A. Moldovyan
%A A. A. Moldovyan
%A V. A. Shcherbacov
%T Generating cubic equations as a~method for public encryption
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2015
%P 60-71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2015_3_a4/
%G en
%F BASM_2015_3_a4
N. A. Moldovyan; A. A. Moldovyan; V. A. Shcherbacov. Generating cubic equations as a~method for public encryption. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2015), pp. 60-71. http://geodesic.mathdoc.fr/item/BASM_2015_3_a4/

[1] Rabin M. O., Digitalized signatures and public key functions as intractable as factorization, Technical report MIT/LCS/TR-212, MIT Laboratory for Computer Science, 1979

[2] Gordon J., “Strong primes are easy to find”, Advances in cryptology – EUROCRYPT' 84, LNCS, 209, Springer-Verlag, 1985, 216–223 | MR

[3] Moldovyan N. A., Moldovyan A. A., “Class of Provably Secure Information Authentication Systems”, Springer Verlag CCIS, 1, 2007, 147–152

[4] Moldovyan N. A., Moldovyan A. A., Shcherbacov V. A., “Provably Sender-Deniable Encryption Scheme”, Proceedings of The Third Conference of Mathematical Society of the Republic of Moldova, IMCS-50 (Chisinau, 19–23 August 2014), Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, 134–141 | Zbl

[5] Moldovyan N. A., Moldovyanu P. A., “Vector form of the finite fields $GF(p^m)$”, Bul. Acad. Ştiinţe Repub. Mold., Mat., 2009, no. 3, 57–63 | MR | Zbl

[6] Alexeev V. B., Abel theorem in problems and solutions, MTSNMO, Moscow, 2001 (in Russian)

[7] Nishihara N., Harasawa R., Sueyoshi Y., Kudo A., “Root computation in finite fields”, IEICE Trans. Fundamentals, E96-A:6 (2013), 1081–1087

[8] Moldovyan N. A., Moldovyan A. A., Shcherbacov V. A., “Provably sender-deniable encryption scheme”, Computer Science Journal of Moldova, 23:1(67) (2015), 62–71 | MR

[9] Moldovyan A. A., Moldovyan N. A., Shcherbacov V. A., “Bi-Deniable Public-Key Encryption Protocol Secure Against Active Coercive Adversary”, Bul. Acad. Ştiinţe Repub. Mold., Mat., 2014, no. 3(76), 23–29 | MR

[10] Moldovyan A. A., Moldovyan N. A., “Practical Method for Bi-Deniable Public-Key Encryption”, Quasigroups and related systems, 22 (2014), 277–282 | MR | Zbl

[11] ElGamal T., “A public key cryptosystem and a signature scheme based on discrete logarithms”, IEEE Transactions on Information Theory, IT-31:4 (1985), 469–472 | DOI | MR | Zbl