Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2015_3_a4, author = {N. A. Moldovyan and A. A. Moldovyan and V. A. Shcherbacov}, title = {Generating cubic equations as a~method for public encryption}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {60--71}, publisher = {mathdoc}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2015_3_a4/} }
TY - JOUR AU - N. A. Moldovyan AU - A. A. Moldovyan AU - V. A. Shcherbacov TI - Generating cubic equations as a~method for public encryption JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2015 SP - 60 EP - 71 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2015_3_a4/ LA - en ID - BASM_2015_3_a4 ER -
%0 Journal Article %A N. A. Moldovyan %A A. A. Moldovyan %A V. A. Shcherbacov %T Generating cubic equations as a~method for public encryption %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2015 %P 60-71 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2015_3_a4/ %G en %F BASM_2015_3_a4
N. A. Moldovyan; A. A. Moldovyan; V. A. Shcherbacov. Generating cubic equations as a~method for public encryption. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2015), pp. 60-71. http://geodesic.mathdoc.fr/item/BASM_2015_3_a4/
[1] Rabin M. O., Digitalized signatures and public key functions as intractable as factorization, Technical report MIT/LCS/TR-212, MIT Laboratory for Computer Science, 1979
[2] Gordon J., “Strong primes are easy to find”, Advances in cryptology – EUROCRYPT' 84, LNCS, 209, Springer-Verlag, 1985, 216–223 | MR
[3] Moldovyan N. A., Moldovyan A. A., “Class of Provably Secure Information Authentication Systems”, Springer Verlag CCIS, 1, 2007, 147–152
[4] Moldovyan N. A., Moldovyan A. A., Shcherbacov V. A., “Provably Sender-Deniable Encryption Scheme”, Proceedings of The Third Conference of Mathematical Society of the Republic of Moldova, IMCS-50 (Chisinau, 19–23 August 2014), Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, 134–141 | Zbl
[5] Moldovyan N. A., Moldovyanu P. A., “Vector form of the finite fields $GF(p^m)$”, Bul. Acad. Ştiinţe Repub. Mold., Mat., 2009, no. 3, 57–63 | MR | Zbl
[6] Alexeev V. B., Abel theorem in problems and solutions, MTSNMO, Moscow, 2001 (in Russian)
[7] Nishihara N., Harasawa R., Sueyoshi Y., Kudo A., “Root computation in finite fields”, IEICE Trans. Fundamentals, E96-A:6 (2013), 1081–1087
[8] Moldovyan N. A., Moldovyan A. A., Shcherbacov V. A., “Provably sender-deniable encryption scheme”, Computer Science Journal of Moldova, 23:1(67) (2015), 62–71 | MR
[9] Moldovyan A. A., Moldovyan N. A., Shcherbacov V. A., “Bi-Deniable Public-Key Encryption Protocol Secure Against Active Coercive Adversary”, Bul. Acad. Ştiinţe Repub. Mold., Mat., 2014, no. 3(76), 23–29 | MR
[10] Moldovyan A. A., Moldovyan N. A., “Practical Method for Bi-Deniable Public-Key Encryption”, Quasigroups and related systems, 22 (2014), 277–282 | MR | Zbl
[11] ElGamal T., “A public key cryptosystem and a signature scheme based on discrete logarithms”, IEEE Transactions on Information Theory, IT-31:4 (1985), 469–472 | DOI | MR | Zbl