A note on weak structures due to Cs\'asz\'ar
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2015), pp. 114-116

Voir la notice de l'article provenant de la source Math-Net.Ru

Weak structures has been introduced by Á. Császár and it has been shown that every generalized topology and every minimal structure is a weak structure. Recently E. Ekici introduced and studied the structure $r(w)$ in a weak structure $w$ on $X$. In general the structure $r(w)$ need not be a topology on $X$. In this paper we have shown that under some conditions $r(w)$ is a topology on $X$. Further, comparision of two weak structures has been studied.
@article{BASM_2015_2_a9,
     author = {A. K. Das},
     title = {A note on weak structures due to {Cs\'asz\'ar}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {114--116},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2015_2_a9/}
}
TY  - JOUR
AU  - A. K. Das
TI  - A note on weak structures due to Cs\'asz\'ar
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2015
SP  - 114
EP  - 116
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2015_2_a9/
LA  - en
ID  - BASM_2015_2_a9
ER  - 
%0 Journal Article
%A A. K. Das
%T A note on weak structures due to Cs\'asz\'ar
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2015
%P 114-116
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2015_2_a9/
%G en
%F BASM_2015_2_a9
A. K. Das. A note on weak structures due to Cs\'asz\'ar. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2015), pp. 114-116. http://geodesic.mathdoc.fr/item/BASM_2015_2_a9/