A note on weak structures due to Császár
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2015), pp. 114-116
Cet article a éte moissonné depuis la source Math-Net.Ru
Weak structures has been introduced by Á. Császár and it has been shown that every generalized topology and every minimal structure is a weak structure. Recently E. Ekici introduced and studied the structure $r(w)$ in a weak structure $w$ on $X$. In general the structure $r(w)$ need not be a topology on $X$. In this paper we have shown that under some conditions $r(w)$ is a topology on $X$. Further, comparision of two weak structures has been studied.
@article{BASM_2015_2_a9,
author = {A. K. Das},
title = {A note on weak structures due to {Cs\'asz\'ar}},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {114--116},
year = {2015},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2015_2_a9/}
}
A. K. Das. A note on weak structures due to Császár. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2015), pp. 114-116. http://geodesic.mathdoc.fr/item/BASM_2015_2_a9/
[1] Á. Császár, “Generalized open sets”, Acta Math. Hungar., 75:1–2 (1997), 65–87 | DOI | MR | Zbl
[2] Á. Császár, “Generalized topology, generalized continuity”, Acta Math. Hungar., 96:4 (2002), 351–357 | DOI | MR | Zbl
[3] Á. Császár, “Generalized open sets in generalized topologies”, Acta Math. Hungar., 106:1–2 (2005), 53–66 | MR | Zbl
[4] Á. Császár, “Weak structures”, Acta Math. Hungar., 131:1–2 (2011), 193–195 | DOI | MR | Zbl
[5] E. Ekici, “On weak structures due to Császár”, Acta Math. Hungar., 134:4 (2012), 565–570 | DOI | MR | Zbl