On $2$-absorbing primary subsemimodules over commutative semirings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2015), pp. 27-35
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we define $2$-absorbing primary subsemimodules of a semimodule $M$ over a commutative semiring $S$ with $1\neq0$ which is a generalization of primary subsemimodules of semimodules. A proper subsemimodule $N$ of a semimodule $M$ is said to be a $2$-absorbing primary subsemimodule of $M$ if $abm\in N$ implies $ab\in \sqrt{(N:M)}$ or $am\in N$ or $bm\in N$ for some $a,b\in S$ and $m\in M$. It is proved that if $K$ is a subtractive subsemimodule of $M$ and $\sqrt{(K:M)}$ is a subtractive ideal of $S$, then $K$ is a $2$-absorbing primary subsemimodule of $M$ if and only if whenever $IJN\subseteq K$ for some ideals $I, J$ of $S$ and a subsemimodule $N$ of $M$, then $IJ\subseteq\sqrt{(K:M)}$ or $IN\subseteq K$ or $JN\subseteq K$. In this paper, we prove a number of results concerning $2$-absorbing primary subsemimodules.
@article{BASM_2015_2_a2,
author = {Manish Kant Dubey and Poonam Sarohe},
title = {On $2$-absorbing primary subsemimodules over commutative semirings},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {27--35},
publisher = {mathdoc},
number = {2},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2015_2_a2/}
}
TY - JOUR AU - Manish Kant Dubey AU - Poonam Sarohe TI - On $2$-absorbing primary subsemimodules over commutative semirings JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2015 SP - 27 EP - 35 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2015_2_a2/ LA - en ID - BASM_2015_2_a2 ER -
%0 Journal Article %A Manish Kant Dubey %A Poonam Sarohe %T On $2$-absorbing primary subsemimodules over commutative semirings %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2015 %P 27-35 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2015_2_a2/ %G en %F BASM_2015_2_a2
Manish Kant Dubey; Poonam Sarohe. On $2$-absorbing primary subsemimodules over commutative semirings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2015), pp. 27-35. http://geodesic.mathdoc.fr/item/BASM_2015_2_a2/