On $2$-absorbing primary subsemimodules over commutative semirings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2015), pp. 27-35

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we define $2$-absorbing primary subsemimodules of a semimodule $M$ over a commutative semiring $S$ with $1\neq0$ which is a generalization of primary subsemimodules of semimodules. A proper subsemimodule $N$ of a semimodule $M$ is said to be a $2$-absorbing primary subsemimodule of $M$ if $abm\in N$ implies $ab\in \sqrt{(N:M)}$ or $am\in N$ or $bm\in N$ for some $a,b\in S$ and $m\in M$. It is proved that if $K$ is a subtractive subsemimodule of $M$ and $\sqrt{(K:M)}$ is a subtractive ideal of $S$, then $K$ is a $2$-absorbing primary subsemimodule of $M$ if and only if whenever $IJN\subseteq K$ for some ideals $I, J$ of $S$ and a subsemimodule $N$ of $M$, then $IJ\subseteq\sqrt{(K:M)}$ or $IN\subseteq K$ or $JN\subseteq K$. In this paper, we prove a number of results concerning $2$-absorbing primary subsemimodules.
@article{BASM_2015_2_a2,
     author = {Manish Kant Dubey and Poonam Sarohe},
     title = {On $2$-absorbing primary subsemimodules over commutative semirings},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {27--35},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2015_2_a2/}
}
TY  - JOUR
AU  - Manish Kant Dubey
AU  - Poonam Sarohe
TI  - On $2$-absorbing primary subsemimodules over commutative semirings
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2015
SP  - 27
EP  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2015_2_a2/
LA  - en
ID  - BASM_2015_2_a2
ER  - 
%0 Journal Article
%A Manish Kant Dubey
%A Poonam Sarohe
%T On $2$-absorbing primary subsemimodules over commutative semirings
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2015
%P 27-35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2015_2_a2/
%G en
%F BASM_2015_2_a2
Manish Kant Dubey; Poonam Sarohe. On $2$-absorbing primary subsemimodules over commutative semirings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2015), pp. 27-35. http://geodesic.mathdoc.fr/item/BASM_2015_2_a2/