Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2015_2_a2, author = {Manish Kant Dubey and Poonam Sarohe}, title = {On $2$-absorbing primary subsemimodules over commutative semirings}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {27--35}, publisher = {mathdoc}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2015_2_a2/} }
TY - JOUR AU - Manish Kant Dubey AU - Poonam Sarohe TI - On $2$-absorbing primary subsemimodules over commutative semirings JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2015 SP - 27 EP - 35 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2015_2_a2/ LA - en ID - BASM_2015_2_a2 ER -
%0 Journal Article %A Manish Kant Dubey %A Poonam Sarohe %T On $2$-absorbing primary subsemimodules over commutative semirings %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2015 %P 27-35 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2015_2_a2/ %G en %F BASM_2015_2_a2
Manish Kant Dubey; Poonam Sarohe. On $2$-absorbing primary subsemimodules over commutative semirings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2015), pp. 27-35. http://geodesic.mathdoc.fr/item/BASM_2015_2_a2/
[1] Allen P. J., “A fundamental theorem of homomorphism for semirings”, Proc. Amer. Math. Soc., 21 (1969), 412–416 | DOI | MR | Zbl
[2] Atani R. E., Atani S. E., “Ideal theory in commutative semirings”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2008, no. 2(57), 14–23 | MR | Zbl
[3] Atani R. E., Atani S. E., “On subsemimodules of semimodules”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2010, no. 2, 20–30 | MR | Zbl
[4] Atani R. E., Atani S. E., “Spectra of semimodules”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2011, no. 3, 15–28 | MR | Zbl
[5] Atani S. E., “On $k$-weakly primary ideals over semirings”, Sarajevo J. of Math., 15:3 (2007), 9–13 | MR | Zbl
[6] Badawi A., Tekir U., Yetkin E., “On $2$-absorbing primary ideals in commutative rings”, Bull. Korean Math. Soc., 51 (2014), 1163–1173 | DOI | MR | Zbl
[7] Chaudhari J. N., Bonde D., “Weakly prime subsemimodules of semimodules over semirings”, Int. J. Algebra, 5:4 (2011), 167–174 | MR | Zbl
[8] Chaudhari J. N., Bonde D., “On partitioning and subtractive subsemimodules of semimodules over semirings”, Kyungpook Math. J., 50 (2010), 329–336 | DOI | MR | Zbl
[9] Darani A. Y., “On $2$-absorbing and weakly $2$-absorbing ideals of commutative semirings”, Kyungpook Math. J., 52:1 (2012), 91–97 | DOI | MR | Zbl
[10] Deore R. P., “On associated primes and primary subsemimodule”, International Journal of Algebra, 2:16 (2008), 795–801 | MR | Zbl
[11] Dubey M. K., “Prime and weakly prime ideals in semirings”, Quasigroups and Related Systems, 20 (2012), 151–156 | MR
[12] Dubey M. K., Aggarwal P., “On $2$-absorbing submodules over commutative rings”, Lobachevskii Journal of Mathematics, 36:1 (2015), 58–64 | DOI | MR | Zbl
[13] Dubey M. K., Sarohe P., “On $2$-absorbing semimodules”, Quasigroups and Related Systems, 21 (2013), 175–184 | MR | Zbl
[14] Golan J. S., Semirings and their applications, Kluwer Academic Publishers, Dordrecht, 1999 | MR | Zbl
[15] Kumar P., Dubey M. K., Sarohe P., “On $2$-absorbing primary ideals in commutative semirings”, European J. of Pure and Applied Maths, 2015 (to appear)
[16] Vandiver H. S., “Note on a Simple type of Algebra in Which the Cancellation Law of Addition Does not Hold”, Bull. Amer. Math. Soc., 40:3 (1934), 916–920 | MR