On $2$-absorbing primary subsemimodules over commutative semirings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2015), pp. 27-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we define $2$-absorbing primary subsemimodules of a semimodule $M$ over a commutative semiring $S$ with $1\neq0$ which is a generalization of primary subsemimodules of semimodules. A proper subsemimodule $N$ of a semimodule $M$ is said to be a $2$-absorbing primary subsemimodule of $M$ if $abm\in N$ implies $ab\in \sqrt{(N:M)}$ or $am\in N$ or $bm\in N$ for some $a,b\in S$ and $m\in M$. It is proved that if $K$ is a subtractive subsemimodule of $M$ and $\sqrt{(K:M)}$ is a subtractive ideal of $S$, then $K$ is a $2$-absorbing primary subsemimodule of $M$ if and only if whenever $IJN\subseteq K$ for some ideals $I, J$ of $S$ and a subsemimodule $N$ of $M$, then $IJ\subseteq\sqrt{(K:M)}$ or $IN\subseteq K$ or $JN\subseteq K$. In this paper, we prove a number of results concerning $2$-absorbing primary subsemimodules.
@article{BASM_2015_2_a2,
     author = {Manish Kant Dubey and Poonam Sarohe},
     title = {On $2$-absorbing primary subsemimodules over commutative semirings},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {27--35},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2015_2_a2/}
}
TY  - JOUR
AU  - Manish Kant Dubey
AU  - Poonam Sarohe
TI  - On $2$-absorbing primary subsemimodules over commutative semirings
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2015
SP  - 27
EP  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2015_2_a2/
LA  - en
ID  - BASM_2015_2_a2
ER  - 
%0 Journal Article
%A Manish Kant Dubey
%A Poonam Sarohe
%T On $2$-absorbing primary subsemimodules over commutative semirings
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2015
%P 27-35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2015_2_a2/
%G en
%F BASM_2015_2_a2
Manish Kant Dubey; Poonam Sarohe. On $2$-absorbing primary subsemimodules over commutative semirings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2015), pp. 27-35. http://geodesic.mathdoc.fr/item/BASM_2015_2_a2/

[1] Allen P. J., “A fundamental theorem of homomorphism for semirings”, Proc. Amer. Math. Soc., 21 (1969), 412–416 | DOI | MR | Zbl

[2] Atani R. E., Atani S. E., “Ideal theory in commutative semirings”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2008, no. 2(57), 14–23 | MR | Zbl

[3] Atani R. E., Atani S. E., “On subsemimodules of semimodules”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2010, no. 2, 20–30 | MR | Zbl

[4] Atani R. E., Atani S. E., “Spectra of semimodules”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2011, no. 3, 15–28 | MR | Zbl

[5] Atani S. E., “On $k$-weakly primary ideals over semirings”, Sarajevo J. of Math., 15:3 (2007), 9–13 | MR | Zbl

[6] Badawi A., Tekir U., Yetkin E., “On $2$-absorbing primary ideals in commutative rings”, Bull. Korean Math. Soc., 51 (2014), 1163–1173 | DOI | MR | Zbl

[7] Chaudhari J. N., Bonde D., “Weakly prime subsemimodules of semimodules over semirings”, Int. J. Algebra, 5:4 (2011), 167–174 | MR | Zbl

[8] Chaudhari J. N., Bonde D., “On partitioning and subtractive subsemimodules of semimodules over semirings”, Kyungpook Math. J., 50 (2010), 329–336 | DOI | MR | Zbl

[9] Darani A. Y., “On $2$-absorbing and weakly $2$-absorbing ideals of commutative semirings”, Kyungpook Math. J., 52:1 (2012), 91–97 | DOI | MR | Zbl

[10] Deore R. P., “On associated primes and primary subsemimodule”, International Journal of Algebra, 2:16 (2008), 795–801 | MR | Zbl

[11] Dubey M. K., “Prime and weakly prime ideals in semirings”, Quasigroups and Related Systems, 20 (2012), 151–156 | MR

[12] Dubey M. K., Aggarwal P., “On $2$-absorbing submodules over commutative rings”, Lobachevskii Journal of Mathematics, 36:1 (2015), 58–64 | DOI | MR | Zbl

[13] Dubey M. K., Sarohe P., “On $2$-absorbing semimodules”, Quasigroups and Related Systems, 21 (2013), 175–184 | MR | Zbl

[14] Golan J. S., Semirings and their applications, Kluwer Academic Publishers, Dordrecht, 1999 | MR | Zbl

[15] Kumar P., Dubey M. K., Sarohe P., “On $2$-absorbing primary ideals in commutative semirings”, European J. of Pure and Applied Maths, 2015 (to appear)

[16] Vandiver H. S., “Note on a Simple type of Algebra in Which the Cancellation Law of Addition Does not Hold”, Bull. Amer. Math. Soc., 40:3 (1934), 916–920 | MR