On the number of ring topologies on countable rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2015), pp. 103-114

Voir la notice de l'article provenant de la source Math-Net.Ru

For any countable ring $R$ and any non-discrete metrizable ring topology $\tau_0$, the lattice of all ring topologies admits: – Continuum of non-discrete metrizable ring topologies stronger than the given topology $\tau_0$ and such that $\sup\{\tau_1,\tau_2\}$ is the discrete topology for any different topologies; – Continuum of non-discrete metrizable ring topologies stronger than $\tau_0$ and such that any two of these topologies are comparable; – Two to the power of continuum of ring topologies stronger than $\tau_0$, each of them being a coatom in the lattice of all ring topologies.
@article{BASM_2015_1_a6,
     author = {V. I. Arnautov and G. N. Ermakova},
     title = {On the number of ring topologies on countable rings},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {103--114},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2015_1_a6/}
}
TY  - JOUR
AU  - V. I. Arnautov
AU  - G. N. Ermakova
TI  - On the number of ring topologies on countable rings
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2015
SP  - 103
EP  - 114
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2015_1_a6/
LA  - en
ID  - BASM_2015_1_a6
ER  - 
%0 Journal Article
%A V. I. Arnautov
%A G. N. Ermakova
%T On the number of ring topologies on countable rings
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2015
%P 103-114
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2015_1_a6/
%G en
%F BASM_2015_1_a6
V. I. Arnautov; G. N. Ermakova. On the number of ring topologies on countable rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2015), pp. 103-114. http://geodesic.mathdoc.fr/item/BASM_2015_1_a6/