On the number of ring topologies on countable rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2015), pp. 103-114
Voir la notice de l'article provenant de la source Math-Net.Ru
For any countable ring $R$ and any non-discrete metrizable ring topology $\tau_0$, the lattice of all ring topologies admits:
– Continuum of non-discrete metrizable ring topologies stronger than the given topology $\tau_0$ and such that $\sup\{\tau_1,\tau_2\}$ is the discrete topology for any different topologies;
– Continuum of non-discrete metrizable ring topologies stronger than $\tau_0$ and such that any two of these topologies are comparable;
– Two to the power of continuum of ring topologies stronger than $\tau_0$, each of them being a coatom in the lattice of all ring topologies.
@article{BASM_2015_1_a6,
author = {V. I. Arnautov and G. N. Ermakova},
title = {On the number of ring topologies on countable rings},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {103--114},
publisher = {mathdoc},
number = {1},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2015_1_a6/}
}
TY - JOUR AU - V. I. Arnautov AU - G. N. Ermakova TI - On the number of ring topologies on countable rings JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2015 SP - 103 EP - 114 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2015_1_a6/ LA - en ID - BASM_2015_1_a6 ER -
V. I. Arnautov; G. N. Ermakova. On the number of ring topologies on countable rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2015), pp. 103-114. http://geodesic.mathdoc.fr/item/BASM_2015_1_a6/