Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2014_3_a4, author = {Natalija Ladzoryshyn and Vasyl' Petrychkovych}, title = {Equivalence of pairs of matrices with relatively prime determinants over quadratic rings of principal ideals}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {38--48}, publisher = {mathdoc}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2014_3_a4/} }
TY - JOUR AU - Natalija Ladzoryshyn AU - Vasyl' Petrychkovych TI - Equivalence of pairs of matrices with relatively prime determinants over quadratic rings of principal ideals JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2014 SP - 38 EP - 48 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2014_3_a4/ LA - en ID - BASM_2014_3_a4 ER -
%0 Journal Article %A Natalija Ladzoryshyn %A Vasyl' Petrychkovych %T Equivalence of pairs of matrices with relatively prime determinants over quadratic rings of principal ideals %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2014 %P 38-48 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2014_3_a4/ %G en %F BASM_2014_3_a4
Natalija Ladzoryshyn; Vasyl' Petrychkovych. Equivalence of pairs of matrices with relatively prime determinants over quadratic rings of principal ideals. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2014), pp. 38-48. http://geodesic.mathdoc.fr/item/BASM_2014_3_a4/
[1] Dlab V., Ringel C. M., “Canonical forms of pairs of complex matrices”, Linear Algebra Appl., 147 (1991), 387–410 | DOI | MR | Zbl
[2] Gaiduk T. N., Sergeichuk V. V., “Generic canonical form of pairs of matrices with zeros”, Linear Algebra Appl., 380 (2004), 241—251 | DOI | MR | Zbl
[3] Petrichkovich V. M., “Semiscalar equivalence and the Smith normal form of polynomial matrices”, J. Sov. Math., 66:1 (1993), 2030–2033 | DOI | MR
[4] Dias da Silva J. A., Laffey T. J., “On simultaneous similarity of matrices and related questions”, Linear Algebra Appl., 291 (1999), 167–184 | DOI | MR | Zbl
[5] Petrichkovich V. M., “Semiscalar equivalence and factorization of polynomial matrices”, Ukrainian Math. J., 42 (1990), 570–574 | DOI | MR | Zbl
[6] Kazimirs'kii P. S., Decomposition of matrix polynomials into factors, Naukova Dumka, Kiev, 1981 (in Ukrainian)
[7] Petrychkovych V., “Generalized equivalence of pairs of matrices”. Linear and Multilinear Algebra, 48:2 (2000), 179–188 | DOI | MR | Zbl
[8] Varbanets S. P., “General Kloosterman sums over ring of Gaussian integers”, Ukrainian Math. J., 59:9 (2007), 1313–1341 | DOI | MR | Zbl
[9] Velichko I. N., “Generalized Kloosterman sum over the matrix ring $M_n(\mathbb Z[i])$”, Visn. Odes. Nats. Univ., Ser. Mat. and Mekh., 15:19 (2010), 9–20 (in Russian)
[10] Nica B., “The unreasonable slightness of $E_2$ over imaginary quadratic rings”, Amer. Math. Monthly, 118:5 (2011), 455–462 | DOI | MR | Zbl
[11] Taylor G., “Cyclotomic matrices and graphs over the ring of integers of some imaginary quadratic fields”, J. Algebra, 331:1 (2011), 523–545 | DOI | MR | Zbl
[12] Taylor G., “Lehmer's conjecture for matrices over the ring of integers of some imaginary quadratic fields”, J. Number Theory, 132:4 (2012), 590–607 | DOI | MR | Zbl
[13] Greaves G., “Cyclotomic matrices over the Eisenstein and Gaussian integers”, J. Algebra, 372 (2012), 560–583 | DOI | MR | Zbl
[14] Sidorov S. V., “On similarity of $2\times2$ matrices over the ring of Gaussian integers with reducible characteristic polynomial”, Vestn. Nizhni Novgorod Univ., 2008, no. 4, 122–126 (in Russian)
[15] Rodosskii K. A., The Euclidean algorithm, Nauka, Moscow, 1988 (in Russian) | MR | Zbl
[16] Zelisko V. R., Ladzoryshyn N. B., Petrychkovych V. M., “On equivalence of matrices over quadratic Euclidean rings”, Appl. Problems of Mechanics and Math., 2006, no. 4, 16–21 (in Ukrainian)
[17] Hasse H., Number theory, Springer-Verlag, New York–Berlin, 1980 | MR | Zbl
[18] Clark David A., “A quadratic field which is Euclidean but not norm-Euclidean”, Manuscripta Math., 83:3–4 (1994), 327–330 | DOI | MR | Zbl
[19] Harper Malcolm, “$\mathbb Z[\sqrt{14}]$ is Euclidean”, Canad. J. Math., 56:1 (2004), 55–70 | DOI | MR | Zbl
[20] Newman Morris, Integral matrices, Pure and Applied Mathematics, 45, Academic Press, New York, 1972 | MR | Zbl