Equivalence of pairs of matrices with relatively prime determinants over quadratic rings of principal ideals
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2014), pp. 38-48
Voir la notice de l'article provenant de la source Math-Net.Ru
A special equivalence of matrices and their pairs over quadratic rings is investigated. It is established that for the pair of $n\times n$ matrices $A,B$ over the quadratic rings of principal ideals $\mathbb Z[\sqrt k]$, where $(\operatorname{det}A,\operatorname{det}B)=1$, there exist invertible matrices $U\in GL(n,\mathbb Z)$ and $V^A,V^B\in GL(n,\mathbb Z[\sqrt k])$ such that $UAV^A=T^A$ and $UBV^B=T^B$ are the lower triangular matrices with invariant factors on the main diagonals.
@article{BASM_2014_3_a4,
author = {Natalija Ladzoryshyn and Vasyl' Petrychkovych},
title = {Equivalence of pairs of matrices with relatively prime determinants over quadratic rings of principal ideals},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {38--48},
publisher = {mathdoc},
number = {3},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2014_3_a4/}
}
TY - JOUR AU - Natalija Ladzoryshyn AU - Vasyl' Petrychkovych TI - Equivalence of pairs of matrices with relatively prime determinants over quadratic rings of principal ideals JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2014 SP - 38 EP - 48 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2014_3_a4/ LA - en ID - BASM_2014_3_a4 ER -
%0 Journal Article %A Natalija Ladzoryshyn %A Vasyl' Petrychkovych %T Equivalence of pairs of matrices with relatively prime determinants over quadratic rings of principal ideals %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2014 %P 38-48 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2014_3_a4/ %G en %F BASM_2014_3_a4
Natalija Ladzoryshyn; Vasyl' Petrychkovych. Equivalence of pairs of matrices with relatively prime determinants over quadratic rings of principal ideals. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2014), pp. 38-48. http://geodesic.mathdoc.fr/item/BASM_2014_3_a4/