Equivalence of pairs of matrices with relatively prime determinants over quadratic rings of principal ideals
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2014), pp. 38-48

Voir la notice de l'article provenant de la source Math-Net.Ru

A special equivalence of matrices and their pairs over quadratic rings is investigated. It is established that for the pair of $n\times n$ matrices $A,B$ over the quadratic rings of principal ideals $\mathbb Z[\sqrt k]$, where $(\operatorname{det}A,\operatorname{det}B)=1$, there exist invertible matrices $U\in GL(n,\mathbb Z)$ and $V^A,V^B\in GL(n,\mathbb Z[\sqrt k])$ such that $UAV^A=T^A$ and $UBV^B=T^B$ are the lower triangular matrices with invariant factors on the main diagonals.
@article{BASM_2014_3_a4,
     author = {Natalija Ladzoryshyn and Vasyl' Petrychkovych},
     title = {Equivalence of pairs of matrices with relatively prime determinants over quadratic rings of principal ideals},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {38--48},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2014_3_a4/}
}
TY  - JOUR
AU  - Natalija Ladzoryshyn
AU  - Vasyl' Petrychkovych
TI  - Equivalence of pairs of matrices with relatively prime determinants over quadratic rings of principal ideals
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2014
SP  - 38
EP  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2014_3_a4/
LA  - en
ID  - BASM_2014_3_a4
ER  - 
%0 Journal Article
%A Natalija Ladzoryshyn
%A Vasyl' Petrychkovych
%T Equivalence of pairs of matrices with relatively prime determinants over quadratic rings of principal ideals
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2014
%P 38-48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2014_3_a4/
%G en
%F BASM_2014_3_a4
Natalija Ladzoryshyn; Vasyl' Petrychkovych. Equivalence of pairs of matrices with relatively prime determinants over quadratic rings of principal ideals. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2014), pp. 38-48. http://geodesic.mathdoc.fr/item/BASM_2014_3_a4/