On $2$-primal Ore extensions over Noetherian weak $\sigma$-rigid rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 51-59

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a ring, $\sigma$ an endomorphism of $R$ and $\delta$$\sigma$-derivation of $R$. In this article, we discuss skew polynomial rings over $2$-primal weak $\sigma$-rigid rings. We show that if $R$ is a $2$-primal Noetherian weak $\sigma$-rigid ring, then $R[x;\sigma,\delta]$ is a $2$-primal Noetherian weak $\overline\sigma$-rigid ring.
@article{BASM_2014_2_a6,
     author = {Vijay Kumar Bhat},
     title = {On $2$-primal {Ore} extensions over {Noetherian} weak $\sigma$-rigid rings},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {51--59},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2014_2_a6/}
}
TY  - JOUR
AU  - Vijay Kumar Bhat
TI  - On $2$-primal Ore extensions over Noetherian weak $\sigma$-rigid rings
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2014
SP  - 51
EP  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2014_2_a6/
LA  - en
ID  - BASM_2014_2_a6
ER  - 
%0 Journal Article
%A Vijay Kumar Bhat
%T On $2$-primal Ore extensions over Noetherian weak $\sigma$-rigid rings
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2014
%P 51-59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2014_2_a6/
%G en
%F BASM_2014_2_a6
Vijay Kumar Bhat. On $2$-primal Ore extensions over Noetherian weak $\sigma$-rigid rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 51-59. http://geodesic.mathdoc.fr/item/BASM_2014_2_a6/