On $2$-primal Ore extensions over Noetherian weak $\sigma$-rigid rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 51-59
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be a ring, $\sigma$ an endomorphism of $R$ and $\delta$ a $\sigma$-derivation of $R$. In this article, we discuss skew polynomial rings over $2$-primal weak $\sigma$-rigid rings. We show that if $R$ is a $2$-primal Noetherian weak $\sigma$-rigid ring, then $R[x;\sigma,\delta]$ is a $2$-primal Noetherian weak $\overline\sigma$-rigid ring.
@article{BASM_2014_2_a6,
author = {Vijay Kumar Bhat},
title = {On $2$-primal {Ore} extensions over {Noetherian} weak $\sigma$-rigid rings},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {51--59},
publisher = {mathdoc},
number = {2},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2014_2_a6/}
}
TY - JOUR AU - Vijay Kumar Bhat TI - On $2$-primal Ore extensions over Noetherian weak $\sigma$-rigid rings JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2014 SP - 51 EP - 59 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2014_2_a6/ LA - en ID - BASM_2014_2_a6 ER -
Vijay Kumar Bhat. On $2$-primal Ore extensions over Noetherian weak $\sigma$-rigid rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 51-59. http://geodesic.mathdoc.fr/item/BASM_2014_2_a6/