On $2$-primal Ore extensions over Noetherian weak $\sigma$-rigid rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 51-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a ring, $\sigma$ an endomorphism of $R$ and $\delta$$\sigma$-derivation of $R$. In this article, we discuss skew polynomial rings over $2$-primal weak $\sigma$-rigid rings. We show that if $R$ is a $2$-primal Noetherian weak $\sigma$-rigid ring, then $R[x;\sigma,\delta]$ is a $2$-primal Noetherian weak $\overline\sigma$-rigid ring.
@article{BASM_2014_2_a6,
     author = {Vijay Kumar Bhat},
     title = {On $2$-primal {Ore} extensions over {Noetherian} weak $\sigma$-rigid rings},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {51--59},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2014_2_a6/}
}
TY  - JOUR
AU  - Vijay Kumar Bhat
TI  - On $2$-primal Ore extensions over Noetherian weak $\sigma$-rigid rings
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2014
SP  - 51
EP  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2014_2_a6/
LA  - en
ID  - BASM_2014_2_a6
ER  - 
%0 Journal Article
%A Vijay Kumar Bhat
%T On $2$-primal Ore extensions over Noetherian weak $\sigma$-rigid rings
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2014
%P 51-59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2014_2_a6/
%G en
%F BASM_2014_2_a6
Vijay Kumar Bhat. On $2$-primal Ore extensions over Noetherian weak $\sigma$-rigid rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 51-59. http://geodesic.mathdoc.fr/item/BASM_2014_2_a6/

[1] Bhat V. K., “A note on completely prime ideals of Ore extensions”, Internat. J. Algebra Comput., 20:3 (2010), 457–463 | DOI | MR | Zbl

[2] Bhat V. K., “Ore Extensions over weak $\sigma$-rigid rings and $\sigma(*)$-rings”, Eur. J. Pure Appl. Math., 3:4 (2010), 695–703 | MR | Zbl

[3] Bhat V. K., “On 2-primal Ore extensions over Noetherian $\sigma(*)$-rings”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2011, no. 1(65), 42–49 | MR | Zbl

[4] Bhat V. K., “Minimal prime ideals of skew polynomial rings and near pseudo-valuation rings”, Czech. Math. Journal, 63:138 (2013), 1049–1056 | DOI | MR

[5] Goodearl K. R., “Prime Ideals in Skew Polynomial Rings and Quantized Weyl Algebras”, J. Algebra, 150 (1992), 324–377 | DOI | MR | Zbl

[6] Goodearl K. R., Warfield R. B. (Jr.), An introduction to non-commutative Noetherian rings, Cambridge Uni. Press, 1989 | Zbl

[7] Kim N. K., Kwak T. K., “Minimal prime ideals in 2-primal rings”, Math. Japon., 50:3 (1999), 415–420 | MR | Zbl

[8] Krempa J., “Some examples of reduced rings”, Algebra Colloq., 3:4 (1996), 289–300 | MR | Zbl

[9] Kwak T. K., “Prime radicals of skew-polynomial rings”, Int. J. Math. Sci., 2:2 (2003), 219–227 | MR | Zbl

[10] Marks G., “On 2-primal Ore extensions”, Comm. Algebra, 29:5 (2001), 2113–2123 | DOI | MR | Zbl

[11] McCoy N. H., “Completely prime and completely semi-prime ideals”, Rings, modules and radicals, ed. A. Kertesz, J. Bolyai Math. Soc., Budapest, 1973, 147–152 | MR | Zbl

[12] Ouyang L., “Extensions of generalized $\alpha$-rigid rings”, Int. Electron. J. Algebra, 3 (2008), 103–116 | MR | Zbl