Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2014_2_a4, author = {Parascovia Syrbu and Dina Ceban}, title = {On $\pi$-quasigroups of type~$T_1$}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {36--43}, publisher = {mathdoc}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2014_2_a4/} }
Parascovia Syrbu; Dina Ceban. On $\pi$-quasigroups of type~$T_1$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 36-43. http://geodesic.mathdoc.fr/item/BASM_2014_2_a4/
[1] Belousov V., “Parastrophic-orthogonal quasigroups”, Quasigroups and Related Systems, 14 (2005), 3–51 | MR
[2] Belousov V., Foundations of the theory of quasigroups and loops, Nauka, Moscow, 1967 (in Russian) | MR | Zbl
[3] Belousov V., “Balanced identities in quasigroups”, Mat. Sb., 70(112):1 (1966), 55–97 (in Russian) | MR | Zbl
[4] Belousov V., Gwaramija A., “On Stein quasigroups”, Soob. Gruz. SSR, 44 (1966), 537–544 (in Russian) | MR | Zbl
[5] Bennett F. E., “The spectra of a variety of quasigroups and related combinatorial designs”, Discrete Math., 77 (1989), 29–50 | DOI | MR | Zbl
[6] Bennett F. E., “Quasigroups”, Handbook of Combinatorial Designs, eds. C. J. Colbourn, J. H. Dinitz, CRC Press, 1996 | MR
[7] Kepka T., Nemec P., “$T$-quasigroups, I”, Acta univ. Carolinae. Math. Phys., 1:12 (1971), 31–39 | MR
[8] Kinyon M. K., Phillips J. D., “Commutants of Bol loops of odd order”, Proc. Amer. Math. Soc., 132 (2004), 617–619 | DOI | MR | Zbl
[9] Pflugfelder H. O., Quasigroups and loops: introduction, Sigma Series in Pure Math, 1990 | MR
[10] Syrbu P., “On $\pi $-quasigroups isotopic to abelian groups”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2009, no. 3(61), 109–117 | MR | Zbl