On $\pi$-quasigroups of type~$T_1$
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 36-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

Quasigroups satisfying the identity $x(x\cdot xy)=y$ are called $\pi$-quasigroups of type $T_1$. The spectrum of the defining identity is precisely $q=0$ or $1\pmod3$, except for $q=6$. Necessary conditions when a finite $\pi$-quasigroup of type $T_1$ has the order $q=0\pmod3$, are given. In particular, it is proved that a finite $\pi$-quasigroup of type $T_1$ such that the order of its inner mapping group is not divisible by three has a left unit. Necessary and sufficient conditions when the identity $x(x\cdot xy)=y$ is invariant under the isotopy of quasigroups (loops) are found.
@article{BASM_2014_2_a4,
     author = {Parascovia Syrbu and Dina Ceban},
     title = {On $\pi$-quasigroups of type~$T_1$},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {36--43},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2014_2_a4/}
}
TY  - JOUR
AU  - Parascovia Syrbu
AU  - Dina Ceban
TI  - On $\pi$-quasigroups of type~$T_1$
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2014
SP  - 36
EP  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2014_2_a4/
LA  - en
ID  - BASM_2014_2_a4
ER  - 
%0 Journal Article
%A Parascovia Syrbu
%A Dina Ceban
%T On $\pi$-quasigroups of type~$T_1$
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2014
%P 36-43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2014_2_a4/
%G en
%F BASM_2014_2_a4
Parascovia Syrbu; Dina Ceban. On $\pi$-quasigroups of type~$T_1$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 36-43. http://geodesic.mathdoc.fr/item/BASM_2014_2_a4/

[1] Belousov V., “Parastrophic-orthogonal quasigroups”, Quasigroups and Related Systems, 14 (2005), 3–51 | MR

[2] Belousov V., Foundations of the theory of quasigroups and loops, Nauka, Moscow, 1967 (in Russian) | MR | Zbl

[3] Belousov V., “Balanced identities in quasigroups”, Mat. Sb., 70(112):1 (1966), 55–97 (in Russian) | MR | Zbl

[4] Belousov V., Gwaramija A., “On Stein quasigroups”, Soob. Gruz. SSR, 44 (1966), 537–544 (in Russian) | MR | Zbl

[5] Bennett F. E., “The spectra of a variety of quasigroups and related combinatorial designs”, Discrete Math., 77 (1989), 29–50 | DOI | MR | Zbl

[6] Bennett F. E., “Quasigroups”, Handbook of Combinatorial Designs, eds. C. J. Colbourn, J. H. Dinitz, CRC Press, 1996 | MR

[7] Kepka T., Nemec P., “$T$-quasigroups, I”, Acta univ. Carolinae. Math. Phys., 1:12 (1971), 31–39 | MR

[8] Kinyon M. K., Phillips J. D., “Commutants of Bol loops of odd order”, Proc. Amer. Math. Soc., 132 (2004), 617–619 | DOI | MR | Zbl

[9] Pflugfelder H. O., Quasigroups and loops: introduction, Sigma Series in Pure Math, 1990 | MR

[10] Syrbu P., “On $\pi $-quasigroups isotopic to abelian groups”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2009, no. 3(61), 109–117 | MR | Zbl