Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2014_1_a4, author = {Heiner Gonska and Ioan Ra\c{s}a and Maria-Daniela Rusu}, title = {Chebyshev--Gr\"uss-type inequalities via discrete oscillations}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {63--89}, publisher = {mathdoc}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2014_1_a4/} }
TY - JOUR AU - Heiner Gonska AU - Ioan Raşa AU - Maria-Daniela Rusu TI - Chebyshev--Gr\"uss-type inequalities via discrete oscillations JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2014 SP - 63 EP - 89 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2014_1_a4/ LA - en ID - BASM_2014_1_a4 ER -
%0 Journal Article %A Heiner Gonska %A Ioan Raşa %A Maria-Daniela Rusu %T Chebyshev--Gr\"uss-type inequalities via discrete oscillations %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2014 %P 63-89 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2014_1_a4/ %G en %F BASM_2014_1_a4
Heiner Gonska; Ioan Raşa; Maria-Daniela Rusu. Chebyshev--Gr\"uss-type inequalities via discrete oscillations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2014), pp. 63-89. http://geodesic.mathdoc.fr/item/BASM_2014_1_a4/
[1] Ukrainian Math. J., 63 (2011), 843–864 | DOI | MR | Zbl
[2] Altomare F., Campiti M., Korovkin-type Approximation Theory and its Applications, de Gruyter, New York, 1994 | MR | Zbl
[3] Andrica D., Badea C., “Grüss' inequality for positive linear functionals”, Periodica Mathematica Hungarica, 19:2 (1988), 155–167 | DOI | MR | Zbl
[4] Berdysheva E., “Studying Baskakov–Durrmeyer operators and quasi-interpolants via special functions”, J. Approx. Theory, 149:2 (2007), 131–150 | DOI | MR | Zbl
[5] Brutman L., “Lebesgue functions for polynomial interpolation – a survey”, Ann. Numer. Math., 4 (1997), 111–127 | MR | Zbl
[6] Chebyshev P. L., “O priblizhennyh vyrazhenijah odnih integralov cherez drugie”, Soobschenija i Protokoly Zasedanij Mathematicheskogo Obschestva pri Imperatorskom Khar'kovskom Universitete, 2, 1882, 93–98; Polnoe Sobranie Sochinenii P. L. Chebysheva, v. 3, Moskva–Leningrad, 1978, 128–131
[7] Oeuvres, 2 (1907), 716–719
[8] Cheney W., Light W., A Course in Approximation Theory, AMS, Providence, RI, 2000
[9] Elsner C., Prévost M., “Expansion of Euler's constant in terms of Zeta numbers”, J. Math. Anal. Appl., 398:2 (2013), 508–526 | DOI | MR | Zbl
[10] Favard J., “Sur les multiplicateurs d'interpolation”, J. Math. Pures Appl., 23:9 (1944), 219–247 | MR | Zbl
[11] Gavrea I., Ivan M., On a conjecture concerning the sum of the squared Bernstein polynomials, Submitted
[12] Gonska H., Heilmann M., Lupaş A., Raşa I., On the composition and decomposition of positive linear operators. III: A non-trivial decomposition of the Bernstein operator, 2012, arXiv: 1204.2723v1
[13] Gonska H., Piţul P., “Remarks on an article of J. P. King”, Comment. Math. Univ. Carolinae, 46 (2005), 645–652 | MR | Zbl
[14] Grüss G., “Über das Maximum des absoluten Betrages von $\frac1{b-a}\int^b_a{f(x)g(x)\,dx}-\frac1{(b-a)^2}\int^b_a{f(x)\,dx}\cdot\int^b_a{g(x)\,dx}$”, Math. Z., 39 (1935), 215–226 | DOI | MR
[15] Hermann T., Vértesi P., “On an interpolatory operator and its saturation”, Acta Math. Hungar., 37:1–3 (1981), 1–9 | DOI | MR | Zbl
[16] King J. P., “Positive linear operators which preserve $x^2$”, Acta Math. Hungar., 99:3 (2003), 203–208 | DOI | MR | Zbl
[17] Korovkin P. P., Linear Operators and Approximation Theory, Hindustan Publ. Corp., Delhi, 1960 | MR
[18] Mercer A. Mc. D., Mercer P. R., “New proofs of the Grüss inequality”, Australian J. Math. Anal. Appl., 1:2 (2004), Article 12, 6 pp. | MR | Zbl
[19] Mirakjan G. M., “Approximation of continuous functions with the aid of polynomials”, Dokl. Akad. Nauk SSSR, 31 (1941), 201–205 (Russian)
[20] Mitrinović D. S., Pečarić J. E., Fink A. M., Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht et al., 1993 | MR | Zbl
[21] Nikolov G., Inequalities for ultraspherical polynomials. Proof of a conjecture of I. Raşa, 2014, arXiv: 1402.6539v1 | MR
[22] Pǎltǎnea R., “Representation of the $K-$functional $K(f,C[a,b],C^1[a,b],\cdot)$ – a new approach”, Bull. Transilv. Univ. Braşov, Ser. III, Math. Inform. Phys., 3:52 (2010), 93–100 | MR
[23] Rivlin T. J., An Introduction to the Approximation of Functions, Blaisdell Pub. Co., Waltham, Mass.; Dover, New York, 1961 | MR
[24] Rusu M.-D., “On Grüss-type inequalities for positive linear operators”, Stud. Univ. Babeş-Bolyai Math., 56:2 (2011), 551–565 | MR
[25] Smith S. J., “Lebesgue constants in polynomial interpolation”, Annales Mathematicae et Informaticae, 33 (2006), 109–123 | MR | Zbl
[26] Szabados J., Vértesi P., Interpolation of Functions, World Scientific, Singapore, 1990 | MR | Zbl
[27] Szász O., “Generalization of S. Bernstein's polynomials to the infinite interval”, J. Res. Nat. Bur. Standards, 45 (1950), 239–245 | DOI | MR