A selection theorem for set-valued maps into normally supercompact spaces
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2013), pp. 99-105

Voir la notice de l'article provenant de la source Math-Net.Ru

The following selection theorem is established: Let $X$ be a compactum possessing a binary normal subbase $\mathcal S$ for its closed subsets. Then every set-valued $\mathcal S$-continuous map $\Phi\colon Z\to X$ with closed $\mathcal S$-convex values, where $Z$ is an arbitrary space, has a continuous single-valued selection. More generally, if $A\subset Z$ is closed and any map from $A$ to $X$ is continuously extendable to a map from $Z$ to $X$, then every selection for $\Phi|A$ can be extended to a selection for $\Phi$. This theorem implies that if $X$ is a $\kappa$-metrizable (resp., $\kappa$-metrizable and connected) compactum with a normal binary closed subbase $\mathcal S$, then every open $\mathcal S$-convex surjection $f\colon X\to Y$ is a zero-soft (resp., soft) map. Our results provide some generalizations and specifications of Ivanov's results (see [5–7]) concerning superextensions of $\kappa$-metrizable compacta.
@article{BASM_2013_2_a10,
     author = {V. Valov},
     title = {A selection theorem for set-valued maps into normally supercompact spaces},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {99--105},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2013_2_a10/}
}
TY  - JOUR
AU  - V. Valov
TI  - A selection theorem for set-valued maps into normally supercompact spaces
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2013
SP  - 99
EP  - 105
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2013_2_a10/
LA  - en
ID  - BASM_2013_2_a10
ER  - 
%0 Journal Article
%A V. Valov
%T A selection theorem for set-valued maps into normally supercompact spaces
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2013
%P 99-105
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2013_2_a10/
%G en
%F BASM_2013_2_a10
V. Valov. A selection theorem for set-valued maps into normally supercompact spaces. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2013), pp. 99-105. http://geodesic.mathdoc.fr/item/BASM_2013_2_a10/