A selection theorem for set-valued maps into normally supercompact spaces
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2013), pp. 99-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following selection theorem is established: Let $X$ be a compactum possessing a binary normal subbase $\mathcal S$ for its closed subsets. Then every set-valued $\mathcal S$-continuous map $\Phi\colon Z\to X$ with closed $\mathcal S$-convex values, where $Z$ is an arbitrary space, has a continuous single-valued selection. More generally, if $A\subset Z$ is closed and any map from $A$ to $X$ is continuously extendable to a map from $Z$ to $X$, then every selection for $\Phi|A$ can be extended to a selection for $\Phi$. This theorem implies that if $X$ is a $\kappa$-metrizable (resp., $\kappa$-metrizable and connected) compactum with a normal binary closed subbase $\mathcal S$, then every open $\mathcal S$-convex surjection $f\colon X\to Y$ is a zero-soft (resp., soft) map. Our results provide some generalizations and specifications of Ivanov's results (see [5–7]) concerning superextensions of $\kappa$-metrizable compacta.
@article{BASM_2013_2_a10,
     author = {V. Valov},
     title = {A selection theorem for set-valued maps into normally supercompact spaces},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {99--105},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2013_2_a10/}
}
TY  - JOUR
AU  - V. Valov
TI  - A selection theorem for set-valued maps into normally supercompact spaces
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2013
SP  - 99
EP  - 105
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2013_2_a10/
LA  - en
ID  - BASM_2013_2_a10
ER  - 
%0 Journal Article
%A V. Valov
%T A selection theorem for set-valued maps into normally supercompact spaces
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2013
%P 99-105
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2013_2_a10/
%G en
%F BASM_2013_2_a10
V. Valov. A selection theorem for set-valued maps into normally supercompact spaces. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2013), pp. 99-105. http://geodesic.mathdoc.fr/item/BASM_2013_2_a10/

[1] Dranishnikov A., “Multivalued absolute retracts and absolute extensors in dimnesions 0 and 1”, Usp. Mat. Nauk, 39:5(239) (1984), 241–242 (in Russian) | MR | Zbl

[2] Fedorchuk V., “Some geometric properties of covariant functors”, Usp. Mat. Nauk, 39:5(239) (1984), 169–208 (in Russian) | MR | Zbl

[3] Fedorchuk V., Filippov V., General Topology: Basic constructions, Moscow State University, Moscow, 1988 (in Russian) | Zbl

[4] de Groot J., “Supercompactness and superextensions”, Contributions to extension theory of topological structures, Symp. (Berlin, 1967), Deutscher Verlag Wiss., Berlin, 1969, 89–90 | MR

[5] Ivanov A., “Superextension of openly generated compacta”, Dokl. Akad. Nauk SSSR, 259:2 (1981), 275–278 (in Russian) | MR | Zbl

[6] Ivanov A., “Solution of van Mill's problem on the characterization of compacta, the superextension of which are absolute retracts”, Dokl. Akad. Nauk SSSR, 262:3 (1982), 526–528 (in Russian) | MR | Zbl

[7] Ivanov A., “Mixers, functors, and soft mappings”, Proceedings of Steklov Inst. of Math., 193, 1993, 139–142 | MR | Zbl

[8] Haydon R., “On a problem of Pelczynski: Milutin spaces, Dugundji spaces and $AE(0-dim)$”, Studia Math., 52 (1974), 23–31 | MR | Zbl

[9] van Mill J., Supercompactness and Wallman spaces, Math. Centre Tracts, 85, Amsterdam, 1977 | MR

[10] Shirokov L., “External characterization of Dugundji spaces and $\kappa$-metrizable compacta”, Dokl. Acad. Nauk SSSR, 263:5 (1982), 1073–1077 (in Russian) | MR | Zbl

[11] Shchepin E., “Topology of limit spaces of uncountable inverse spectra”, Russian Math. Surveys, 31:5 (1976), 155–191 | DOI | MR | Zbl

[12] Valov V., “Extenders and $\kappa$-metrizable compacta”, Math. Notes, 89:3 (2011), 331–341 | DOI | MR