The generalized Lagrangian mechanical systems
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2012), pp. 74-80

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalized Lagrangian mechanics is a triple $\Sigma_{GL}=(M,\mathcal E,F_e)$ formed by a real $n$-dimensional manifold $M$, the generalized kinetic energy $\mathcal E$ and the external forces $F_e$. The Lagrange equations (or fundamental equations) can be defined for a generalized Lagrangian mechanical system $\Sigma_{GL}$. We get a straightforward extension of the notions of Riemannian, or Finslerian, or Lagrangian mechanical systems studied in the recent book [7]. The applications of this systems in Mechanics, Physical Fields or Relativistic Optics are pointed out. Much more information can be found in the books or papers from References [1–10].
@article{BASM_2012_2_a5,
     author = {Radu Miron},
     title = {The generalized {Lagrangian} mechanical systems},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {74--80},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2012_2_a5/}
}
TY  - JOUR
AU  - Radu Miron
TI  - The generalized Lagrangian mechanical systems
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2012
SP  - 74
EP  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2012_2_a5/
LA  - en
ID  - BASM_2012_2_a5
ER  - 
%0 Journal Article
%A Radu Miron
%T The generalized Lagrangian mechanical systems
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2012
%P 74-80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2012_2_a5/
%G en
%F BASM_2012_2_a5
Radu Miron. The generalized Lagrangian mechanical systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2012), pp. 74-80. http://geodesic.mathdoc.fr/item/BASM_2012_2_a5/