On partial inverse operations in the lattice of submodules
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2012), pp. 59-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work two partial operations in the lattice of submodules $\boldsymbol L(_RM)$ are defined and investigated. They are the inverse operations for $\omega$-product and $\alpha$-coproduct studied in [6]. This is the continuation of the article [7], in which the similar questions for the operations of $\alpha$-product and $\omega$-coproduct are investigated. The partial inverse operation of left quotient $N\,/_\odot\,K$ of $N$ by $K$ with respect to $\omega$-product is introduced and similarly the right quotient $N\,_:\backslash\,K$ of $K$ by $N$ with respect to $\alpha$-coproduct is defined, where $N,K\in\boldsymbol L(_RM)$. The criteria of existence of such quotients are indicated, as well as the different forms of representation, the main properties, the relations with lattice operations in $\boldsymbol L(_RM)$, the conditions of cancellation and other related questions are elucidated.
@article{BASM_2012_2_a4,
     author = {A. I. Kashu},
     title = {On partial inverse operations in the lattice of submodules},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {59--73},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2012_2_a4/}
}
TY  - JOUR
AU  - A. I. Kashu
TI  - On partial inverse operations in the lattice of submodules
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2012
SP  - 59
EP  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2012_2_a4/
LA  - en
ID  - BASM_2012_2_a4
ER  - 
%0 Journal Article
%A A. I. Kashu
%T On partial inverse operations in the lattice of submodules
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2012
%P 59-73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2012_2_a4/
%G en
%F BASM_2012_2_a4
A. I. Kashu. On partial inverse operations in the lattice of submodules. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2012), pp. 59-73. http://geodesic.mathdoc.fr/item/BASM_2012_2_a4/

[1] Bican L., Kepka T., Nemec P., Rings, modules and preradicals, Marcel Dekker, New York, 1982 | MR | Zbl

[2] Bican L., Jambor P., Kepka T., Nemec P., “Prime and coprime modules”, Fundamenta Mathematicae, 107:1 (1980), 33–45 | MR | Zbl

[3] Golan J. S., Linear topologies on a ring, Longman Sci. Techn., New York, 1987 | MR | Zbl

[4] Raggi F., Montes J. R., Rincon H., Fernandes-Alonso R., Signoret C., “The lattice structure of preradicals”, Commun. in Algebra, 30:3 (2002), 1533–1544 | DOI | MR | Zbl

[5] Kashu A. I., “Preradicals and characteristic submodules: connections and operations”, Algebra and Discrete Mathematics, 9:2 (2010), 59–75 | MR

[6] Kashu A. I., “On some operations in the lattice of submodules determinined by preradicals”, Bul. Acad. Ştiinţe Repub. Moldova, Matematica, 2011, no. 2(66), 5–16 | MR | Zbl

[7] Kashu A. I., “On inverse operations in the lattices of submodules”, Algebra and Discrete Mathematics, 13:2 (2012), 273–288 | MR | Zbl