Moment analysis of the telegraph random process
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2012), pp. 90-107

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Goldstein–Kac telegraph process $X(t)$, $t>0$, on the real line $\mathbb R^1$ performed by the random motion at finite speed $c$ and controlled by a homogeneous Poisson process of rate $\lambda>0$. Using a formula for the moment function $\mu_{2k}(t)$ of $X(t)$ we study its asymptotic behaviour, as $c,\lambda$ and $t$ vary in different ways. Explicit asymptotic formulas for $\mu_{2k}(t)$, as $k\to\infty$, are derived and numerical comparison of their effectiveness is given. We also prove that the moments $\mu_{2k}(t)$ for arbitrary fixed $t>0$ satisfy the Carleman condition and, therefore, the distribution of the telegraph process is completely determined by its moments. Thus, the moment problem is completely solved for the telegraph process $X(t)$. We obtain an explicit formula for the Laplace transform of $\mu_{2k}(t)$ and give a derivation of the the moment generating function based on direct calculations. A formula for the semi-invariants of $X(t)$ is also presented.
@article{BASM_2012_1_a8,
     author = {Alexander D. Kolesnik},
     title = {Moment analysis of the telegraph random process},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {90--107},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2012_1_a8/}
}
TY  - JOUR
AU  - Alexander D. Kolesnik
TI  - Moment analysis of the telegraph random process
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2012
SP  - 90
EP  - 107
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2012_1_a8/
LA  - en
ID  - BASM_2012_1_a8
ER  - 
%0 Journal Article
%A Alexander D. Kolesnik
%T Moment analysis of the telegraph random process
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2012
%P 90-107
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2012_1_a8/
%G en
%F BASM_2012_1_a8
Alexander D. Kolesnik. Moment analysis of the telegraph random process. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2012), pp. 90-107. http://geodesic.mathdoc.fr/item/BASM_2012_1_a8/