On cyclically-interval edge colorings of trees
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2012), pp. 50-58

Voir la notice de l'article provenant de la source Math-Net.Ru

For an undirected, simple, finite, connected graph $G$, we denote by $V(G)$ and $E(G)$ the sets of its vertices and edges, respectively. A function $\varphi\colon E(G)\to\{1,2,\dots,t\}$ is called a proper edge $t$-coloring of a graph $G$ if adjacent edges are colored differently and each of $t$ colors is used. An arbitrary nonempty subset of consecutive integers is called an interval. If $\varphi$ is a proper edge $t$-coloring of a graph $G$ and $x\in V(G)$, then $S_G(x,\varphi)$ denotes the set of colors of edges of $G$ which are incident with $x$. A proper edge $t$-coloring $\varphi$ of a graph $G$ is called a cyclically-interval $t$-coloring if for any $x\in V(G)$ at least one of the following two conditions holds: a) $S_G(x,\varphi)$ is an interval, b) $\{1,2,\dots,t\}\setminus S_G(x,\varphi)$ is an interval. For any $t\in\mathbb N$, let $\mathfrak M_t$ be the set of graphs for which there exists a cyclically-interval $t$-coloring, and let $\mathfrak M\equiv\bigcup_{t\geq1}\mathfrak M_t$. For an arbitrary tree $G$, it is proved that $G\in\mathfrak M$ and all possible values of $t$ are found for which $G\in\mathfrak M_t$.
@article{BASM_2012_1_a4,
     author = {R. R. Kamalian},
     title = {On cyclically-interval edge colorings of trees},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {50--58},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2012_1_a4/}
}
TY  - JOUR
AU  - R. R. Kamalian
TI  - On cyclically-interval edge colorings of trees
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2012
SP  - 50
EP  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2012_1_a4/
LA  - en
ID  - BASM_2012_1_a4
ER  - 
%0 Journal Article
%A R. R. Kamalian
%T On cyclically-interval edge colorings of trees
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2012
%P 50-58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2012_1_a4/
%G en
%F BASM_2012_1_a4
R. R. Kamalian. On cyclically-interval edge colorings of trees. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2012), pp. 50-58. http://geodesic.mathdoc.fr/item/BASM_2012_1_a4/