On LCA groups whose rings of continuous endomorphisms have at most two non-trivial closed ideals.~I
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2011), pp. 91-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the torsion, locally compact abelian (LCA) groups $X$ for which the ring $E(X)$ of continuous endomorphisms of $X$, endowed with the compact-open topology, has no more than two non-trivial closed ideals.
@article{BASM_2011_3_a8,
     author = {Valeriu Popa},
     title = {On {LCA} groups whose rings of continuous endomorphisms have at most two non-trivial closed {ideals.~I}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {91--107},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2011_3_a8/}
}
TY  - JOUR
AU  - Valeriu Popa
TI  - On LCA groups whose rings of continuous endomorphisms have at most two non-trivial closed ideals.~I
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2011
SP  - 91
EP  - 107
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2011_3_a8/
LA  - en
ID  - BASM_2011_3_a8
ER  - 
%0 Journal Article
%A Valeriu Popa
%T On LCA groups whose rings of continuous endomorphisms have at most two non-trivial closed ideals.~I
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2011
%P 91-107
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2011_3_a8/
%G en
%F BASM_2011_3_a8
Valeriu Popa. On LCA groups whose rings of continuous endomorphisms have at most two non-trivial closed ideals.~I. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2011), pp. 91-107. http://geodesic.mathdoc.fr/item/BASM_2011_3_a8/

[1] Armacost D. L., The structure of locally compact abelian groups, Pure and Applied Mathematics Series, 68, Marcel Dekker, New York, 1981 | MR | Zbl

[2] Braconnier J., “Sur les groupes topologiques localement compact”, J. Math. Pures Apl., 27:9 (1948), 1–85 | MR | Zbl

[3] Fuchs L., Infinite abelian groups, v. 1, Academic Press, New York–London, 1970 | MR | Zbl

[4] Engelking R., General topology, Warszawa, 1977 | MR | Zbl

[5] Hewitt E., Ross K., Abstract Harmonic Analysis, v. 1, Nauka, Moscow, 1975 | MR

[6] Perticani F., “Commutative rings in which every proper ideal is maximal”, Fund. Math., 71 (1971), 193–198 | MR | Zbl

[7] Popa V., “Units, idempotents and nilpotents of an endomorphism ring. II”, Bul. Acad. Ştiinţe. Repub. Mold., Mat., 1997, no. 1(23), 93–105 | MR

[8] Popa V., “LCA groups with topologically simple ring of continuous endomorphisms”, Bul. Acad. Ştiinţe. Repub. Mold., Mat., 1998, no. 2(27), 39–49 | MR | Zbl

[9] Popa V., “On LCA groups with compact rings of continuous endomorphisms”, Bul. Acad. Ştiinţe. Repub. Mold., Mat., 2000, no. 1(32), 17–32 | MR

[10] Popa V., “Topological rings with at most two nontrvial closed ideals”, Bul. Acad. Ştiinţe. Repub. Mold., Mat., 2010, no. 3(64), 77–93 | MR | Zbl