Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2011_3_a8, author = {Valeriu Popa}, title = {On {LCA} groups whose rings of continuous endomorphisms have at most two non-trivial closed {ideals.~I}}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {91--107}, publisher = {mathdoc}, number = {3}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2011_3_a8/} }
TY - JOUR AU - Valeriu Popa TI - On LCA groups whose rings of continuous endomorphisms have at most two non-trivial closed ideals.~I JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2011 SP - 91 EP - 107 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2011_3_a8/ LA - en ID - BASM_2011_3_a8 ER -
%0 Journal Article %A Valeriu Popa %T On LCA groups whose rings of continuous endomorphisms have at most two non-trivial closed ideals.~I %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2011 %P 91-107 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2011_3_a8/ %G en %F BASM_2011_3_a8
Valeriu Popa. On LCA groups whose rings of continuous endomorphisms have at most two non-trivial closed ideals.~I. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2011), pp. 91-107. http://geodesic.mathdoc.fr/item/BASM_2011_3_a8/
[1] Armacost D. L., The structure of locally compact abelian groups, Pure and Applied Mathematics Series, 68, Marcel Dekker, New York, 1981 | MR | Zbl
[2] Braconnier J., “Sur les groupes topologiques localement compact”, J. Math. Pures Apl., 27:9 (1948), 1–85 | MR | Zbl
[3] Fuchs L., Infinite abelian groups, v. 1, Academic Press, New York–London, 1970 | MR | Zbl
[4] Engelking R., General topology, Warszawa, 1977 | MR | Zbl
[5] Hewitt E., Ross K., Abstract Harmonic Analysis, v. 1, Nauka, Moscow, 1975 | MR
[6] Perticani F., “Commutative rings in which every proper ideal is maximal”, Fund. Math., 71 (1971), 193–198 | MR | Zbl
[7] Popa V., “Units, idempotents and nilpotents of an endomorphism ring. II”, Bul. Acad. Ştiinţe. Repub. Mold., Mat., 1997, no. 1(23), 93–105 | MR
[8] Popa V., “LCA groups with topologically simple ring of continuous endomorphisms”, Bul. Acad. Ştiinţe. Repub. Mold., Mat., 1998, no. 2(27), 39–49 | MR | Zbl
[9] Popa V., “On LCA groups with compact rings of continuous endomorphisms”, Bul. Acad. Ştiinţe. Repub. Mold., Mat., 2000, no. 1(32), 17–32 | MR
[10] Popa V., “Topological rings with at most two nontrvial closed ideals”, Bul. Acad. Ştiinţe. Repub. Mold., Mat., 2010, no. 3(64), 77–93 | MR | Zbl